[1] 周汉申. 单组元液体火箭发动机设计与研究[M]. 北京: 中国宇航出版社, 2009.
[2]陈锐达, 刘昌国, 关亮. 国外单组元变推力发动机应用与关键技术[J]. 火箭推进, 2020, 46(2): 1-8.
CHEN R D, LIU C G, GUAN L. Application and key technologies of foreign monopropellant throttling engine[J]. Journal of Rocket Propulsion, 2020, 46(2): 1-8.
[3]王新强, 邓康清, 李洪旭, 等. HAN基绿色推进剂点火技术研究进展[J]. 火箭推进, 2017, 43(2): 72-76.
WANG X Q, DENG K Q, LI H X, et al. Research progress on ignition of HAN-based green propellant[J]. Journal of Rocket Propulsion, 2017, 43(2): 72-76.
[4]禹天福. 空间化学推进技术的发展[J]. 火箭推进, 2005, 31(6): 23-29.
YU T F. Development of space chemical propulsion technology[J]. Journal of Rocket Propulsion, 2005, 31(6): 23-29.
[5]刘俊, 潘一力, 李伟, 等. C/SiC复合材料在高能HAN发动机上应用研究[J]. 火箭推进, 2017, 43(5): 63-68.
LIU J, PAN Y L, LI W, et al. Research on application of C/SiC composite in high-energy HAN-based thruster[J]. Journal of Rocket Propulsion, 2017, 43(5): 63-68.
[6]白梅杉, 於希乔,陆文杰, 等. 硝酸羟胺发动机喷注器特种流量分配方法[J]. 火箭推进, 2023, 49(5): 99-106.
BAI M S, YU X Q, LU W J, et al. Injector flow distribution method of a hydroxylamine nitrate thruster[J]. Journal of Rocket Propulsion, 2023, 49(5): 99-106.
[7]OOMMEN C, RAJARAMAN S, CHANDRU A, et al. Catalytic decomposition of hydroxylammonium nitrate monopropellant[C]//2011 International Conference on Chemistry and Chemical Process.[S.l.]:[s.n.], 2011.
[8]任晓光, 李明慧, 王爱琴, 等. 室温条件下硝酸羟胺的催化分解[J]. 催化学报, 2007, 28(1): 1-2.
REN X G, LI M H, WANG A Q, et al. Catalytic decomposition of hydroxyl ammonium nitrate at room temperature[J]. Chinese Journal of Catalysis, 2007, 28(1): 1-2.
[9]ZHANG Z P, LI B L, CHEN Q, et al. Catalytic decomposition of hydroxylamine nitrate and hydrazine nitrate using Ru/ZSM-5 catalyst under mild reaction conditions[J]. RSC Advances, 2022, 12(8): 4469-4474.
[10]周悦, 公绪滨, 方涛. 硝酸羟胺基无毒单组元推进剂应用探讨[J]. 导弹与航天运载技术, 2015(4): 32-35.
ZHOU Y, GONG X B, FANG T. Applicable discussion on HAN-based nontoxic monopropellant[J]. Missiles and Space Vehicles, 2015(4): 32-35.
[11]申连华, 项锴, 鲍世国, 等. 热分析法研究硝酸羟胺水溶液的分解[J]. 火箭推进, 2020, 46(5): 66-72.
SHEN L H, XIANG K, BAO S G, et al. Investigation on the decomposition process of hydroxyl ammonium nitrate solution by thermal analysis[J]. Journal of Rocket Propulsion, 2020, 46(5): 66-72.
[12]YETTER R A, YANG V. Development of meso and micro scale liquid propellant thruster[C]//41st Aerospace Sciences Meeting and Exhibit.Reston, Virigina: AIAA, 2003.
[13]余永刚, 李明, 周彦煌, 等. 液体推进剂液滴电点火特性的实验研究[J]. 含能材料, 2008, 16(5): 625-628.
YU Y G, LI M, ZHOU Y H, et al. Experimental study on electrical ignition properties of liquid propellant droplet[J]. Chinese Journal of Energetic Materials, 2008, 16(5): 625-628.
[14]RISHA G A, YETTER R A, YANG V. Electrolytic-induced decomposition and ignition of Han-based liquid monopropellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2007, 6(5): 575-588.
[15]CHAI W S, KOH K S, CHEAH K H, et al. Performance comparison between single and multi-electrode system for electrolytic decomposition of HAN[C]//30th International Symposium on Space Technology and Science.Kobe, Japan:[s.n.], 2015.
[16]CHAI W S, CHEAH K H, KOH K S, et al. Parametric studies of electrolytic decomposition of hydroxylammonium nitrate(HAN)energetic ionic liquid in microreactor using image processing technique[J]. Chemical Engineering Journal, 2016, 296: 19-27.
[17]CARLETON F B, KLEIN N, KRALLIS K, et al. Initiating reaction in liquid propellants by focused laser beams[J]. Combustion Science and Technology, 1993, 88(1): 33-41.
[18]WUCHERER E, CHRISTOFFERSON S, REED B. Assessment of high performance HAN-monopropellants[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2000.
[19]MCPHERSON M D. Solid electrically controlled propellants: US9914671[P]. 2018-03-13.
[20]KATZAKIAN A, GRIX C. Method for controlling a high performance electrically controlled solution solid propellant: US8617327[P]. 2013-12-31.
[21]刘连池. ReaxFF反应力场的开发及其在材料科学中的若干应用[D]. 上海: 上海交通大学, 2012.
LIU L C. Development of ReaxFF reactive force field and several applications in materials science[D]. Shanghai: Shanghai Jiao Tong University, 2012.
[22]CURTISS L A, REDFERN P C, RAGHAVACHARI K. Gaussian-4 theory[J]. The Journal of Chemical Physics, 2007, 126(8): 84108.
[23]胡旭, 刘川, 王海丰, 等. Ir(100)面上HAN催化分解反应机理[J]. 火箭推进, 2021, 47(4): 79-86.
HU X, LIU C, WANG H F, et al. The catalytic decomposition mechanism of HAN on Ir(100)surface[J]. Journal of Rocket Propulsion, 2021, 47(4): 79-86.
[24]LI S T, LI M Z, ZHOU X S, et al. DFT study on decomposition of hydrazine nitrate on Ir(100)surface[J]. Computational and Theoretical Chemistry, 2022, 1217: 113917.
[25]WANG F P, CHEN L, GENG D S, et al. Thermal decomposition mechanism of CL-20 at different temperatures by ReaxFF reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry A, 2018, 122(16): 3971-3979.
[26]LAN G C, LI J, ZHANG G Y, et al. Thermal decomposition mechanism study of 3-nitro-1, 2, 4-triazol-5-one(NTO): Combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations[J]. Fuel, 2021, 295: 120655.
[27]DÖNTGEN M, PRZYBYLSKI-FREUND M D, KRÖGER L C, et al. Automated discovery of reaction pathways, rate constants, and transition states using reactive molecular dynamics simulations[J]. Journal of Chemical Theory and Computation, 2015, 11(6): 2517-2524.