|Table of Contents|

Convective heat transfer characteristics of rocket kerosene in circular mini-tubes at ultra-high parameter conditions(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年05期
Page:
114-121
Research Field:
目次
Publishing date:

Info

Title:
Convective heat transfer characteristics of rocket kerosene in circular mini-tubes at ultra-high parameter conditions
Author(s):
LIU Zhaohui1CHEN Xuejiao2JIANG Rongpei2
1.State Key Laboratory of Multiphase Flow in Power Engineering,Xi'an Jiaotong University, Xi'an 710049, China; 2.Beijing Key Laboratory of Research and Application for Aerospace Green Propellants,Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
Keywords:
regenerative cooling rocket kerosene heat transfer ultra-high parameter mini-channel high heat flux
PACS:
V19
DOI:
10.3969/j.issn.1672-9374.2024.05.011
Abstract:
The regenerative cooling process using rocket kerosene has the specifications of high pressure, high temperature, high heat flux and high mass flow rate. Under the condition of ultra-high parameters, the low-voltage and high-current electrical heating method was used to simulate the thermal environment of the thrust chamber in the rocket engine, and the heat transfer characteristics of rocket kerosene are studied in the high-temperature alloy steel φ2 mm×0.5 mm round tube. The parameter ranges are of pressure 25-65 MPa, mass flow rate 8 500~51 000 kg/(m2·s), fluid temperature up to ~500 ℃ and heat flux up to 35 MW/m2. The results indicate that under the tested conditions, the rocket kerosene is in a single-phase liquid forced convection heat transfer mechanism. The heat transfer performance is mainly affected by the fluid temperature and mass flow rate. As the fluid temperature increased, the heat transfer coefficient increases. As the mass flow rate increased, the heat transfer coefficient increases. The pressure in the range of 25-65 MPa has no significant effect on the heat transfer performance. With the increase of heat flux, the inner wall temperature increases significantly, but the variation of heat flux has no significant effect on the heat transfer coefficient. Under the influence of the heat transfer enhance effect at the inlet, the heat transfer coefficient increases, and the higher the heat flux, the more obvious the inlet effect is. The heat transfer characteristics of rocket kerosene under ultra-high parameters, especially under ultra-high pressure conditions, provide a reference for the application of regenerative cooling technology in the rocket engine.

References:

[1] 蔡国飙. 液体火箭发动机设计[M]. 北京: 北京航空航天大学出版社, 2011.
[2]KANDA T, MASUYA G, WAKAMATSU Y, et al. Effect of regenerative cooling on rocket engine specific impulse[J]. Journal of Propulsion and Power, 1994, 10(2): 286-288.
[3]侯瑞峰, 李龙飞, 陈建华, 等. 液体火箭发动机不同室压下冷却方案适用范围[J]. 航空动力学报, 2022, 37(12): 2797-2806.
HOU R F, LI L F, CHEN J H, et al. Adaptability of cooling structure schemes of liquid propellant rocket engine thrust chamber under different pressures[J]. Journal of Aerospace Power, 2022, 37(12): 2797-2806.
[4]BATES R, EDWARDS J, MEYER M. Heat transfer and deposition behavior of hydrocarbon rocket fuels[C]//41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2003.
[5]陈锐达,徐辉,陈泓宇,等. 1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J].火箭推进,2023,49(4):17-25.
CHEN R D, XU H, CHEN H Y, et al. Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J]. Journal of Rocket Propulsion, 2023, 49(4): 17-25.
[6]MAAS E, IRVINE S, BATES R, et al. A high heat flux facility design for testing of advanced hydrocarbon fuel thermal stability[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2005.
[7]LUO S B, XU D Q, SONG J W, et al. A review of regenerative cooling technologies for scramjets[J]. Applied Thermal Engineering, 2021, 190: 116754.
[8]颜建国.高热流密度主动冷却通道内过冷水和碳氢燃料的流动传热特性研究[D]. 西安: 西安交通大学, 2016.
[9]BILLINGSLEY M. Thermal stability and heat transfer characteristics of RP-2[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2008.
[10]HERNANDEZ L, PALACIOS R, ORTEGA D, et al. The effect of surface roughness on LCH4 boiling heat transfer performance of conventionally and additively manufactured rocket engine regenerative cooling channels[C]//AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: AIAA, 2019.
[11]LIANG K M, YANG B E, ZHANG Z L. Investigation of heat transfer and coking characteristics of hydrocarbon fuels[J]. Journal of Propulsion and Power, 1998, 14(5): 789-796.
[12]胡志宏, 陈听宽, 罗毓珊, 等. 超临界压力下煤油传热特性试验研究[J]. 西安交通大学学报, 1999, 33(9): 62-65.
HU Z H, CHEN T K, LUO Y S, et al. Heat transfer characteristics of kerosene at supercritical pressure[J]. Journal of Xi'an Jiaotong University, 1999, 33(9): 62-65.
[13]胡志宏, 陈听宽, 罗毓珊, 等. 高热流条件下超临界压力煤油流过小直径管的传热特性[J]. 化工学报, 2002, 53(2): 134-138.
HU Z H, CHEN T K, LUO Y S, et al. Heat transfer to kerosene at supercritical pressure in small-diameter tube with large heat flux[J]. Journal of Chemical Industry and Engineering(China), 2002, 53(2): 134-138.
[14]罗毓珊, 陈听宽, 胡志宏, 等. 高参数小管径内煤油的传热特性研究[J]. 工程热物理学报, 2005, 26(4): 609-612.
LUO Y S, CHEN T K, HU Z H, et al. Investigation on heat transfer characteristics for kerosene under high parameter and in small diameter tube[J]. Journal of Engineering Thermophysics, 2005, 26(4): 609-612.
[15]YAN J G, LIU S C, GUO P C, et al. Experiments on heat transfer of supercritical pressure kerosene in mini tube under ultra-high heat fluxes[J]. Energies, 2020, 13(5): 1229.
[16]WANG H J, LUO Y S, GU H F, et al. Experimental investigation on heat transfer and pressure drop of kerosene at supercritical pressure in square and circular tube with artificial roughness[J]. Experimental Thermal and Fluid Science, 2012, 42: 16-24.
[17]罗玉宏, 游岳, 蒋榕培, 等. 添加减阻剂的火箭煤油流阻与传热特性研究[J]. 火箭推进, 2018, 44(5): 66-70.
LUO Y H, YOU Y, JIANG R P, et al. Study on flow resistance and heat transfer characteristics of rocket kerosene adding drag reducer[J]. Journal of Rocket Propulsion, 2018, 44(5): 66-70.
[18]张赞坚, 刘朝晖, 潘辉, 等. 低流阻火箭煤油的超临界压力流动与换热特性[J]. 西安交通大学学报, 2019, 53(1): 129-134.
ZHANG Z J, LIU Z H, PAN H, et al. Flow and heat transfer characteristics of low-flow resistance rocket kerosene under supercritical pressure[J]. Journal of Xi'an Jiaotong University, 2019, 53(1): 129-134.
[19]张家庆, 蒋榕培, 史伟康, 等. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665.
ZHANG J Q, JIANG R P, SHI W K, et al. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene[J]. CIESC Journal, 2023, 74(2): 653-665.
[20]李沛奇, 陈雪娇, 武博翔, 等. 高参数石油基和煤基火箭煤油射线法密度测量实验研究[J]. 化工学报, 2024, 75(7): 2422-2432.
LI P Q, CHEN X J, WU B X, et al. Experimental study on radiometric density measurements of petroleum-based and coal-based rocket kerosene at high-parameters[J]. CIESC Journal, 2024, 75(7): 2422-2432.

Memo

Memo:
-
Last Update: 1900-01-01