[1] 刘柏文,徐元元,雷刚,等.典型低温推进剂的热力学性能参数评估[J]. 火箭推进, 2023, 49(1):44-53.
LIU B W,XU Y Y,LEI G,et al. Evaluation of thermodynamic performance parameters for typical cryogenic propellant[J]. Journal of Rocket Propulsion, 2023, 49(1): 44-53.
[2]张春伟,柴栋栋,马军强,等.低温推进剂致密化技术的发展综述[J]. 火箭推进, 2023, 49(3):1-14.
ZHANG C W,CHAI D D,MA J Q,et al. Review on development of cryogenic propellant densification technology[J]. Journal of Rocket Propulsion, 2023, 49(3):1-14.
[3]张起源. 液氢的危险性综合分析[J]. 国外导弹技术, 1983(7): 50-67.
ZHANG Q Y. Comprehensive analysis of the danger of liquid hydrogen[J]. Missiles and Space Vehicles, 1983(7): 50-67.
[4]LITCHFIELD E, PERLEE H. Fire and explosion hazards of flight vehicle combustibles[EB/OL]. https://www.semanticscholar.org/paper/FIRE-AND-EXPLOSION-HAZ-ARDS-OF-FLIGHT-VEHICLE-Litchfield-Perlee/2678b2482cd5c26a74b2c07c5f7f28b26c4316c6, 1964.
[5]LEE R E. The explosiveness of solid oxygen in liquid hydrogen[Z]. 1952.
[6]CASSUTT L H, MADDOCKS F E, SAWYER W A. A study of the hazards in the storage and handling of liquid hydrogen[M]//TIMMERHAUS K D. Advances in Cryogenic Engineering. Boston, MA: Springer, 1960: 55-61.
[7]张起源. 液氢爆轰和爆炸威力分析[J]. 中国航天, 1982(9): 28-32.
ZHANG Q Y. Detonation and explosive power analysis of liquid hydrogen[J]. Aerospace China, 1982(9): 28-32.
[8]毛宗强. 氢安全[M]. 北京: 化学工业出版社, 2020.
[9]冯庆祥. 固氧在液氢中的行为特性及液氢生产的安全问题[J]. 低温与特气, 1998, 16(1): 55-62.
FENG Q X. Behavior characteristics of solid oxygen in liquid hydrogen and safety problems in liquid hydrogen production[J]. Low Temperature and Specialty Gases, 1998, 16(1): 55-62.
[10]蔡体杰. 液氢生产中若干固氧爆炸事故分析及防爆方法概述[J]. 低温与特气, 1999, 17(3): 52-57.
CAI T J. Analysis of some solid oxygen explosion accidents in liquid hydrogen production and overview of explosion-proof methods[J]. Low Temperature and Specialty Gases, 1999, 17(3): 52-57.
[11]苏嘉南, 刘海生, 安刚. 液氢储罐固态空气沉积试验研究[J]. 低温与超导, 2018, 46(9): 34-38.
SU J N, LIU H S, AN G. Experimental study on sedimentary solid air in liquid hydrogen storage tank[J]. Cryogenics & Superconductivity, 2018, 46(9): 34-38.
[12]刘海生, 刘玉涛, 邱小林. 液氢中固空沉积形式的理论研究[J]. 低温与超导, 2013(8): 26-29.
LIU H S, LIU Y T, QIU X L, et al. Theoretical study of sedimentary formation of solid air in liquid hydrogen[J]. Cryogenics & Superconductivity, 2013(8): 26-29.
[13]刘海生, 张震, 邱小林, 等. 液氢中固空沉积形式的试验研究[J]. 低温工程, 2015(1): 13-16.
LIU H S, ZHANG Z, QIU X L, et al. Experimental study of sedimentary formation of solid air in liquid hydrogen[J]. Cryogenics, 2015(1): 13-16.
[14]余炳延, 苏嘉南, 安刚. 液氢容器复温周期确定方法研究[J]. 低温与超导, 2019, 47(1): 21-25.
YU B Y, SU J N, AN G. Theoretical analysis on reheating cycle of liquid hydrogen container[J]. Cryogenics & Superconductivity, 2019, 47(1): 21-25.
[15]周伟煜, 梁文清, 钱华, 等. 固空沉积的数值模拟[J]. 制冷技术, 2019, 39(1): 21-27.
ZHOU W Y, LIANG W Q, QIAN H, et al. Numerical simulation of sedimentary formation of solid air[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 21-27.
[16]戴闻骁, 雷刚, 郑晓红, 等. 基于LBM-CA模型的自然对流下液氢中固空枝晶生长模拟[J]. 低温工程, 2021(3): 33-39.
DAI W X, LEI G, ZHENG X H, et al. Numerical simulation of air solidification in liquid hydrogen under natural convection with LBM-CA model[J]. Cryogenics, 2021(3): 33-39.
[17]李超龙, 文键, 王磊, 等. 液氢中固空枝晶生长凝固定量相场法研究[J]. 西安交通大学学报, 2023, 57(5): 128-135.
LI C L, WEN J, WANG L, et al. Study on quantitative phase field method of solid-air dendrite growth and solidification in liquid hydrogen[J]. Journal of Xi'an Jiaotong University, 2023, 57(5): 128-135.
[18]LI C L, WEN J, WANG L, et al. Modeling on transient microstructure evolution of solid-air solidification process under continuous cooling in liquid hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(81): 34640-34655.
[19]梁鸽, 王磊, 上官石, 等. 液氢中空气溶解度预测及氮-氧存在模式研究[J]. 西安交通大学学报, 2023, 57(4): 162-170.
LIANG G, WANG L, SHANGGUAN S, et al. Prediction on solubility of air in liquid hydrogen and existing modes of nitrogen and oxygen components[J]. Journal of Xi'an Jiaotong University, 2023, 57(4): 162-170.