|Table of Contents|

Experimental investigations on non-rated condition performance of a 10 N thruster with bi-centrifugal swirl injector(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年01期
Page:
52-58
Research Field:
研究与设计
Publishing date:

Info

Title:
Experimental investigations on non-rated condition performance of a 10 N thruster with bi-centrifugal swirl injector
Author(s):
ZHAO Ting12 LIU Changguo12 WU Lingfeng12 NI Weigen12
(1.Shanghai Institute of Space Propulsion, Shanghai 201112, China; 2.Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China)
Keywords:
10 N thruster bi-centrifugal swirl injector non-rated condition
PACS:
V434.3文献标识码:A 文章编号:1672-9374(2020)01-0052-07
DOI:
-
Abstract:
According to the development experience of 10 N bi-propellant thrusters at home and abroad, the range of inlet pressure is from 0.8 MPa to 2.2 MPa.The deviation of inlet pressure will cause great changes in thruster performance such as vacuum specific impulse and gas temperature.To investigate the performance of a 10 N bi-propellant thruster at different supply pressures from 0.8 MPa to 2.2 MPa,experiments were conducted on the discharge device with two-dimensional particle dynamic analyzer,as well as with the 42 km-high-altitude simulation test facility.It has successfully undergone all qualification tests recommended for bipropellant blowdown propulsion system.The results show that the 10 N bi-propellant thruster can fit the supply pressures from 0.6 MPa to 2.5 MPa,the nominal specific impulse of the thruster is greater than 2 881 N·s/kg when the inlet pressure is 1.58 MPa.When the inlet pressure changes from 0.6 MPa to 2.5 MPa, the corresponding vacuum thrust increases from 4.7N to 14 N and the pressure drop-down ratio is 3.As inlet pressure increases, the specific impulse also increases, when the inlet pressure is 0.6 MPa, the vacuum specific impulse is 2 600 N·s/kg; and when the inlet pressure is 2.5 MPa, the vacuum specific impulse is 2 956 N·s/kg.Within the range, the combustion chamber temperature of the thruster is lower than the allowable temperature of the material, reflecting the excellent design of the thruster, which can meet the performance demands of bipropellant blowdown propulsion system for attitude control.

References:

[1] SCHULTE G, GOTZIG U,HORCH A,et al.Further improvements and qualification status of astrium’s 10 N bipropellant thruster family[R].AIAA 2003-4776.
[2] BALAN C G.Development of a 10 N liquid bipropellant thruster for geostationary spacecraft programme of Indian Space Research Organisation[R].AIAA 2009-5529.
[3] MARQUARDT K.Mars flyer rocket propulsion risk assessment[R].NASA CR 2001-210710.
[4] GORDON A.TRW pintle engine heritage and performance characteristics[R].AIAA 2000-3871.
[5] RICHARD J.Results from tests on a 10 N thruster using low temperature(-40℃)propellants [R].AIAA 2001-3254.
[6] WOOD R S.Development of a low cost 22 N bipropellant thruster[R].AIAA 1990-2056.
[7] WILLIS W D.The SDO propulsion subsystem[R].AIAA 2012-4329.
[8] 杨俊, 何永英, 连仁志, 等.双组元落压推进系统应用现状及关键技术[J].火箭推进, 2016, 42(4):21-25.YANG J, HE Y Y, LIAN R Z, et al.Application status and key technology of bipropellant blowdown propulsion systems[J].Journal of Rocket Propulsion, 2016, 42(4):21-25.
[9] 李春红.ARC公司22N双组元姿控发动机大落压工况性能验证[J].火箭推进, 2002, 28(3):52-59.LI C H.Performance verification of ARC 22N two-component attitude control engine under high drop pressure [J].Journal of Rocket Propulsion, 2002, 28(3):52-59.
[10] 毛晓芳, 汪凤山, 杨晓红, 等.小推力双组元姿控发动机性能研究[J].推进技术, 2012, 33(6):987-990.
[11] 刘志泉, 叶超, 林庆国.微小型双组元姿控发动机技术研究[J].火箭推进, 2014, 40(4):1-6.LIU Z Q, YE C, LIN Q G.Study on miniature liquid bipropellant attitude control rocket engine[J].Journal of Rocket Propulsion, 2014, 40(4):1-6.
[12] 庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社, 1995.
[13] 王尧, 李国岫, 虞育松, 等.喷射压力对同轴旋转射流喷雾锥角影响的实验研究[J].推进技术,2017,38(4):188-193.
[14] 潘华辰, 周泽磊, 刘雷.关键结构参数对离心式雾化喷嘴雾化效果的影响研究[J].机械工程学报, 2017, 53(2):199-206.
[15] 李进贤, 何浩波, 岳春国, 等.旋流式气/液同轴喷嘴常压雾化燃烧实验研究[J].宇航学报, 2008, 29(5):1563-1569.
[16] TRINKS H, HOFFMAN R.Experimental investigation of bipropellant exhaust plume flowfield, heating, and contamination, and comparison with the CONTAM computer model predictions[C]//18th Thermophysics Conference. Montreal, Canada,Reston, Virigina:AIAA, 1983.
[17] 杨成虎, 刘犇.喷雾场测试技术研究进展[J].火箭推进, 2010, 36(4):16-23.YANG C H, LIU B.Development of diagnostic techniques for spray measurements[J].Journal of Rocket Propulsion, 2010, 36(4):16-23.
[18] 张蒙正, 傅永贵, 张泽平, 等.两股互击式喷嘴雾化研究及应用[J].推进技术, 1999, 20(2):19-26.
[19] 周红玲.液体远地点发动机优化设计及系统动态性能研究[D].长沙:国防科学技术大学, 2017.
[20] 张绪虎, 汪翔, 贾中华, 等.小推力姿控轨控火箭发动机材料技术研究现状[J].导弹与航天运载技术, 2005(6):32-37.

Memo

Memo:
-
Last Update: 2020-02-25