|Table of Contents|

Application and key technologies of foreign monopropellant throttling engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年02期
Page:
1-8
Research Field:
专论与综述
Publishing date:

Info

Title:
Application and key technologies of foreign monopropellant throttling engine
Author(s):
CHEN Ruida12 LIU Changguo12 GUAN Liang12
(1.Shanghai Institute of Space Propulsion, Shanghai 201112, China; 2.Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China)
Keywords:
monopropellant throttling engine Mars soft landing Viking Curiosity
PACS:
V43
DOI:
-
Abstract:
The application status of the foreign monopropellant throttling engine was introduced.The structure and design principles of the monopropellant throttling engine were explained.The key technologies in the development and improvement process were summarized, mainly including the radial double-layer catalyst bed design, radial injector design, flow stability regulation technology and catalyst bed void control technology.The MR-80 and MR-80B monopropellant throttling hydrazine engines developed by the United States for soft landing on Mars were used for the “Viking” and “Curiosity” lander descent stage propulsion systems respectively.The MR-80 engine can produce a throttleable thrust range from 275 N to 2 835 N with the capability of 10:1 throttling and the specific impulse of 205 s, distributed at 120° on the long sides of the “Viking” lander triangle base.The “Curiosity” lander descent stage propulsion system consists of two high-pressure helium tanks, three propellant tanks, eight monopropellant throttling engines, eight 250 N reaction control system engines, one pressure control assembly and three propellant control assemblies.The MR-80B engine can produce the vacuum thrust range from 31 N to 3 603 N with the capability of 100:1 throttling and the specific impulse of 204~223 s.

References:

[1] CASIANO M J, HULKA J R, YANG V.Liquid-propellant rocket engine throttling:a comprehensive review[J].Journal of Propulsion and Power, 2010, 26(5):897-923.
[2] PRICE T.Experimental evaluation of high-thrust, throttleable monopropellant hydrazine reactors[C]//7th Propulsion Joint Specialist Conference.Salt Lake City, UT, USA.Reston, Virigina:AIAA, 1971.
[3] PERRY R.The antecedents of the X-1[R].AIAA 1965-453.
[4] SMITH J R, KAY A L, CREEK E J.German aircraft of the second world war[M].London:Putnam Publishing Group, 1972.
[5] DRESSLER G.Summary of deep throttling rocket engines with emphasis on Apollo LMDE[R].AIAA 2006-5220.
[6] HARPER A D.High-thrust throttleable monopropellant engine system[J].Journal of Spacecraft and Rockets, 1970, 7(4):429-433.
[7] 雷娟萍, 马杰, 刘昌波.星球着陆下降发动机及我国登月下降发动机设想[J].火箭推进, 2010, 36(5):1-6.LEI J P, MA J, LIU C B.Lander descent engine and assumption of Chinese LMDE[J].Journal of Rocket Propulsion, 2010,36(5):1-6.
[8] SOFFEN G A.The Viking mission to Mars[C]//9th International Symposium on Space Technology and Science.Tokyo:[s.n.], 1971.
[9] GRANT A F.Basic factors involved in the design and operation of catalytic monopropellant-hydrazine reaction chambers[Z].Defense Technical Information Center, 1954.DOI:10.21236/ad0077127.
[10] PARIS A, DUDIK B, FISHER M, et al.Thermal control of the Mars science laboratory spacecraft propellant lines:design architecture and analytical modeling[C]//41st International Conference on Environmental Systems. Portland, Oregon.Reston, Virigina:AIAA, 2011.
[11] PARKER, BAKER R,CASJLLASA.Fabrication assembly and test of the Mars Science Laboratory descent stage propulsion system[R].AAS 2013-461.
[12] WEISS J M, GUERNSEY C S.Design and development of the MSL descent stage propulsion system[R].AAS 2013-458.
[13] KORNFELD R P, PRAKASH R, DEVEREAUX A S, et al.Verification and validation of the Mars science laboratory/curiosity rover entry, descent, and landing system[J].Journal of Spacecraft and Rockets, 2014, 51(4):1251-1269.
[14] 刘川, 刘俊, 邱鑫, 等.火星探测器推进系统初步设想[J].火箭推进, 2014, 40(2):44-48.LIU C, LIU J, QIU X, et al.Preliminary design of propulsion system for Mars exploration[J].Journal of Rocket Propulsion, 2014,40(2):44-48.
[15] 韩泉东, 任建军, 于杭健.国外深空探测推进技术发展及启示[J].火箭推进, 2017, 43(4):1-6.HAN Q D, REN J J, YU H J.Development of propulsion technology abroad for deep space exploration and its inspiration[J].Journal of Rocket Propulsion, 2017,43(4):1-6.
[16] HUTTON R E, MOORE H J, SCOTT R F, et al.Surface erosion caused on Mars from Viking descent engine plume[J].The Moon and the Planets, 1980, 23(3):293-305.
[17] GARVIN J B.Landing induced dust clouds on Venus and Mars[C]//12th Lunar and Planetary Science Conference.Houston:[s.n.], 1981.
[18] HUSEMAN P, BOMBA J.CFD analysis of terminal descent plume impingement for Mars landers[C]//34th Thermophysics Conference.Denver, CO, USA.Reston, Virigina:AIAA, 2000.
[19] BAKER R S, CASILLAS A R, GUERNSEY C S, et al.Mars science laboratory descent-stage integrated propulsion subsystem:development and flight performance[J].Journal of Spacecraft and Rockets, 2014,51(4):1217-1226.
[20] CUTTS J A, HAYATI S A, RAPP D, et al.The Mars technology program[C]//6th International Symposium on Artificial Intelligence and Robotics and Automation in Space.Canada:[s.n.], 2001.
[21] GUERNSEY C S, WEISS J M.Lessons learned from the development of the MSL descent stage propulsion system[R].AAS 2013-457.
[22] MIZUKAMI M, YANKURA G, RUST T, et al.Space shuttle 750 psi helium regulator application on Mars science laboratory propulsion[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Denver, Colorado.Reston, Virigina:AIAA,2009.
[23] HAGOPIAN M, SAULSBERRY R, MCDOUGLE S.NESC independent assessment of pyrovalve ground test anomalies[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Hartford, CT.Reston, Virigina:AIAA, 2008.
[24] ANDY E, MARK R, DARLENE L, et al.Mars Science Laboratory descent stage propulsion tubing configuration and design[C]//IEEE Aerospace Conference.Montana:IEEE, 2009.
[25] CASIANO M J, HULKA J R, YANG V. Liquid-propellant rocket engine throttling:a comprehensive review[J]. Journal of Propulsion and Power, 2010, 26(5):897-923.
[26] MORRISEY D C, MAYBEE D C, STAPLES J W, et al. Development of the Titan Ⅲ transtage ACS hydrazine monopropellant rocket engine modules[C]//5th Propulsion Joint Specialist Conference. Springs, CO, USA. Reston, Virigina:AIAA, 1969.
[27] 白云峰, 林庆国, 金盛宇, 等. 过氧化氢单元催化分解火箭发动机研究[J]. 火箭推进, 2006, 32(4):15-20.BAI Y F, LIN Q G, JIN S Y, et al. Research on rocket engine using hydrogen peroxide of catalytic decomposition[J]. Journal of Rocket Propulsion, 2006, 32(4):15-20.
[28] 刘俊, 刘川. 无毒单元发动机催化燃烧过程可视化试验研究[J]. 导弹与航天运载技术, 2017(3):45-48.
[29] 刘俊, 邱鑫, 段德莉. 新型加热器在运载火箭绿色单元发动机上的应用[J]. 上海航天, 2020, 37(1):113-118.
[30] YARNOT V C, BREWSTER G T. Life test results for a new 4N(1 lbf)thrust class hydrazine monopropellant engine[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, GA. Reston, Virigina:AIAA, 2012.
[31] 刘昌国, 王子模, 关亮, 等.一种变比单组元液体火箭发动机推力室:CN 201811649555.3[P].2019-04-02.
[32] 关亮, 王子模, 金盛宇, 等.单组元液体火箭发动机径向夹套催化剂床:CN 107143433 B[P].2018-10-30.
[33] 方成鑫, 何勇, 刘忠.一种肼类小推力单组元发动机的推力室喷注:CN 104265507 B[P].2016-06-29.
[34] PRITCHARD E B.Mars:past, present, and future[M].Washington DC:AIAA, 1992.
[35] 刘俊, 李小芳.600N单组元推力室的研制[J].火箭推进, 2006, 32(5):12-16.LIU J, LI X F.Development of a 600N monopropellant thruster[J].Journal of Rocket Propulsion, 2006,32(5):12-16.
[36] 刘伟, 胡伟, 周军, 等.低冰点推进剂1N单组元发动机技术研究[J].火箭推进, 2009, 35(5):13-17.LIU W, HU W, ZHOU J, et al.Research on 1N mono-propellant rocket engine with low freezing point propellant[J].Journal of Rocket Propulsion, 2009, 35(5):13-17.
[37] DAWSON M, BREWSTER G, CONRAD C, et al.Monopropellant hydrazine 700 lbf throttling terminal descent engine for Mars science laboratory[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Cincinnati, OH.Reston, Virigina:AIAA,2007.
[38] DAVID W W, POWELL R, CHEN A, et al.Mars Science Laboratory:entry, descent, and landing system performance[C]//IEEE Aerospace Conference.Montana:IEEE, 2007.
[39] MCRIGHT P, POPP C, PIERCE C, et al.Confidence testing of shell-405 and S-405 catalysts in a monopropellant hydrazine thruster[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Tucson, Arizona.Reston, Virigina:AIAA, 2005.
[40] SCHMITZ B, WILLIAMS D, SMITH W, et al.Design and scaling criteria for monopropellant hydrazine rocket engines and gas generators employing shell 405 catalyst[C]//2nd Propulsion Joint Specialist Conference.Colorado Springs, CO, USA.Reston, Virigina:AIAA, 1966.
[41] GOTO D, KAGAWA H, HATTORI A, et al.Monopropellant thruster firing test using KC12GA catalyst[C]//3rd European Workshop on Hydrazine.Sardinia:[s.n.], 2004.
[42] EDWARD J W, WENDY W, BLAKE C, et al.Improving and testing S-405 catalyst[R].AIAA 2013-1644.
[43] WUCHERER E J, COOK T, STIEFEL M, et al.Hydrazine catalyst production-sustaining S-405 technology[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Huntsville, Alabama.Reston, Virigina:AIAA, 2003.
[44] CUNNINGHAM C R, MORRISEY D C.Viking Mars hydrazine terminal descent engine thermal design considerations[J].Journal of Spacecraft and Rockets, 1977, 14(1):11-18.
[45] 何永英, 王倩, 杨芳芳. 星用单元肼推力器工作性能分析及飞行验证[J]. 上海航天, 2019, 36(S2):56-60.
[46] 孙威, 方杰, 蔡国飙, 等. N2O单组元微推力器性能分析及试验[J]. 北京航空航天大学学报, 2008, 34(12):1469-1472.
[47] 陈君, 王梦. 单组元推力器毛细管两相流影响分析[J]. 中国空间科学技术, 2013, 33(2):47-53.
[48] MCDEVITT M R, HITT D L. Numerical study of microscale monopropellant fuel injection using two-phase slug formation[J]. Journal of Propulsion and Power, 2015, 31(2):664-673.
[49] MCDEVITT M R, HITT D L. Enhanced homogeneous catalysis in a monopropellant microthruster[C]//53rd AIAA Aerospace Sciences Meeting. Kissimmee, FL, USA. Reston, Virigina:AIAA, 2015.
[50] HINCKEL J N, JORGE J A, NETO T S, et al. Low cost catalysts for hydrazine monopropellant thrusters[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver, CO. Reston, Virigina:AIAA, 2009.
[51] 周汉申.单组元液体火箭发动机设计与研究[M].北京:中国宇航出版社, 2009.
[52] DONALD C M.Historical perspective:Viking Mars lander propulsion[R].AIAA 1989-2391.

Memo

Memo:
-
Last Update: 2020-04-25