|Table of Contents|

Review on spray process of liquid-liquid coaxial swirl injector(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年03期
Page:
1-10
Research Field:
专论与综述
Publishing date:

Info

Title:
Review on spray process of liquid-liquid coaxial swirl injector
Author(s):
Xiao12KANG Zhongtao3CHENG Peng12
(1.College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China; 2.Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China; 3.Science and Technology on Scramjet Laboratory, CARDC, Mianyang 621000, China)
Keywords:
liquid-liquid coaxial swirl injector internal flow spray characteristic atomization
PACS:
V434.3
DOI:
-
Abstract:
The internal flow mainly studied the flow coefficient, liquid film thickness and gas core radius, and analyzed the internal flow field. A small amount of research has involved the impingement of internal and external nozzles, the amplitude and frequency of the liquid film surface wave. There have been many researches on the external liquid film flow and spray characteristics of liquid-liquid injector. The flow patterns of the internal and external liquid films under different working conditions and structural parameters were observed. A few scholars used theoretical methods to analyze the mechanism of liquid film breaking. The research on the spray characteristics is mainly to obtain the variation of spray cone angle, breaking length, liquid film oscillation frequency, etc., and further study the variation of SMD, droplet velocity and mixing characteristics and so on

References:

[1] 康忠涛. 气液同轴离心式喷嘴非定常雾化机理和燃烧特性研究[D]. 长沙: 国防科学技术大学, 2016.
[2] SEO S, KIM S K, CHOI H S. Combustion dynamics and stability of a fuel-rich gas generator[J]. Journal of Propulsion and Power, 2010, 26(2): 259-266.
[3] BOSTWICK C, GIBBS T, PRABHAKAR A. LOX/methane engine utilizing liquid/liquid Co-axial swirl injector[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida. Reston, Virigina: AIAA, 2011.
[4] 于亮, 周红梅. 离心式喷嘴内部流动的LES/VOF数值模拟[J]. 海军航空工程学院学报, 2017, 32(1): 154-160.
[5] 陈慧源, 康忠涛, 成鹏, 等. 离心式喷嘴充填过程内部流动特性仿真[J]. 航空动力学报, 2018, 33(4): 944-951.
[6] 杨刚, 范华, 李万山. 基于Fluent的压力旋流喷嘴内外流场数值模拟[J]. 工业炉, 2018, 40(2): 15-18.
[7] RIVAS J R R, PIMENTA A P, SALCEDO S G, et al. Study of internal flow of a bipropellant swirl injector of a rocket engine[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(6): 289.
[8] MALY M, JEDELSKY J, SLAMA J, et al. Internal flow and air core dynamics in simplex and spill-return pressure-swirl atomizers[J]. International Journal of Heat and Mass Transfer, 2018, 123: 805-814.
[9] LIU Z L, HUANG Y, SUN L. Studies on air core size in a simplex pressure-swirl atomizer[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18649-18657.
[10] CUI J W, LAI H H, LI J Y, et al. Visualization of internal flow and the effect of orifice geometry on the characteristics of spray and flow field in pressure-swirl atomizers[J]. Applied Thermal Engineering, 2017, 127: 812-822.
[11] 高涌东, 汪建兴, 王海民, 等. 管道中旋流喷嘴雾化流场的速度分布特性[J]. 热能动力工程, 2018, 33(3): 57-63.
[12] 陈晨, 杨样, 高宏力, 等. 敞口式离心喷嘴液膜动态填充及打开过程研究[J]. 推进技术, 2017, 38(6): 1352-1358.
[13] KANG Z T, WANG Z G, LI Q L, et al. Review on pressure swirl injector in liquid rocket engine[J]. Acta Astronautica, 2018, 145: 174-198.
[14] VASQUES B B, MENDON A M T D, DOURADO W M D C. Numerical andexperimental study of swirl atomizers for liquid propellant rocket engines [C]//ASME 2011 International Mechanical Engineering Congress and Exposition.[S.l.]:ASME,2011.
[15] 汪凤山, 毛晓芳, 虞育松, 等. 双组元离心式喷注器雾化性能的大涡模拟数值研究[J]. 空间控制技术与应用, 2012, 38(6): 13-17.
[16] 宋大亮, 凌前程, 章荣军. 双组元离心式喷嘴外喷嘴流动数值模拟分析[J]. 火箭推进, 2018, 44(4): 10-15.
SONG D L, LING Q C, ZHANG R J. Numerical analysis on flow characteristics of outer nozzle of bipropellant pressure-swirl injector[J]. Journal of Rocket Propulsion, 2018, 44(4): 10-15.
[17] 吴宝元, 张民庆, 葛李虎. 具有二次喷注孔带缩进长度离心式喷注单元流量特性的试验研究[J]. 推进技术, 1996, 17(5): 39-42.
[18] KIM D, HAN P, IM J H, et al. Effect ofrecess on the spray characteristics of liquid-liquid swirl coaxial injectors[J]. Journal of Propulsion and Power, 2007, 23(6): 1194-1203.
[19] KIM S, YOON J, YOON Y. Experimental study on the internal flow characteristics for recess length in a swirl coaxial injector[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville, TN. Reston, Virigina: AIAA, 2010.
[20] 丁佳伟. 液/液同轴旋转射流稳定性及液膜破碎机理研究[D]. 北京: 北京交通大学, 2017.
[21] RAMAMURTHI K, THARAKAN T J. Experimental study of liquid sheets formed in coaxial swirl injectors[J]. Journal of Propulsion and Power, 1995, 11(6): 1103-1109.
[22] SIVAKUMAR D, RAGHUNANDAN B N. Formation and separation of merged liquid sheets developed from the mixing of coaxial swirling liquid sheets[J]. Physics of Fluids, 2003, 15(11): 3443-3451.
[23] SIVAKUMAR D, RAGHUNANDAN B N. Jet interaction in liquid-liquid coaxial injectors[J]. Journal of Fluids Engineering, 1996, 118(2): 329-334.
[24] SIVAKUMAR D, RAGHUNANDAN B N. Hysteretic interaction of conical liquid sheets from coaxial atomizers: Influence on the spray characteristics[J]. Physics of Fluids, 1998, 10(6): 1384-1397.
[25] RAMEZANI A R, GHAFOURIAN A. Sprays angle variation of liquid-liquid swirl coaxial injectors[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, Arizona. Reston, Virigina: AIAA,2005.
[26] MORAD M R, ESLAMI E. Numerical and experimental study on air core formation in a liquid-liquid coaxial swirl injector[Z]. 2006.
[27] FISCHER G A A, COSTA F. Spray cone angles by a jet swirl injector for atomization of gelled ethanol[C]//17th Brazilian Congress of Thermal Sciences and Engineering. [S.l.]:ABCM, 2018.
[28] INAMURA T, TAMURA H, SAKAMOTO H. Characteristics of liquid film and spray injected from swirl coaxial injector[J]. Journal of Propulsion and Power, 2003, 19(4): 632-639.
[29] RASHID M S F M, HAMID A H A, GHAFFAR Z A, et al. An experimental investigation on spray characteristics emanating from liquid-liquid coaxial swirl atomizer[C]//AIP Conference Proceedings. Melaka, Malaysia: AIP, 2012.
[30] 徐顺, 康忠涛, 成鹏, 等. 喷注压降对液液同轴离心式喷嘴喷雾锥角的影响研究[J]. 推进技术, 2017, 38(7): 1556-1562.
[31] 王尧. 液体同轴旋转射流破碎与雾化特性的实验研究[D]. 北京: 北京交通大学, 2016.
[32] 王尧, 李国岫, 虞育松, 等. 喷射压力对同轴旋转射流喷雾锥角影响的实验研究[J]. 推进技术, 2017, 38(4): 903-908.
[33] EBERHART C, LINEBERRY D, MOSER M. Effects of variable chamber pressure on swirl coaxial injection: a cold flow study[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville, TN. Reston, Virigina: AIAA, 2010.
[34] ALVES A, LACAVA P T, MARTINS C A. Effects of the number of tangential passages on spray characteristics of a bipropellant atomizer[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36(3): 583-590.
[35] AHN K, HAN Y M, SEO S, et al. Effects of injector recess and chamber pressure on combustion characteristics of liquid-liquid swirl coaxial injectors[J]. Combustion Science and Technology, 2010, 183(3): 252-270.
[36] KIM D J, IM J H, HAN P G, et al. Spray characteristics of a liquid-liquid swirl coaxial injector(Part I): effect of injection condition [Z]. 2006.
[37] KIM D, JEONG W, IM J, et al. The characteristics of swirl coaxial injector under varying geometric and environmental conditions[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida. Reston, Virigina: AIAA, 2004.
[38] 丁佳伟, 李国岫, 虞育松. 结构参数对双组元推力器喷注器雾化性能影响规律的数值模拟研究[J]. 载人航天, 2015, 21(6): 635-641.
[39] SIVAKUMAR D, RAGHUNANDAN B N. Role of geometric parameters on the drop size characteristics of liquid-liquid coaxial swirl atomizers[J]. Atomization and Sprays, 1998, 8(5): 547-563.
[40] DING J W, LI G X, YU Y S. Numerical investigation on liquid sheets interaction characteristics of liquid-liquid coaxial swirling jets in bipropellant thruster[J]. International Journal of Heat and Fluid Flow, 2016, 62: 129-137.
[41] SOLTANI M R, GHORBANIAN K, ASHJAEE M, et al. Spray characteristics of a liquid-liquid coaxial swirl atomizer at different mass flow rates[J]. Aerospace Science and Technology, 2005, 9(7): 592-604.
[42] DING J W, LI G X, YU Y S. The instability and droplet size distribution of liquid-liquid coaxial swirling spray: an experimental investigation[J]. Experimental Thermal and Fluid Science, 2017, 82: 166-173.
[43] 郭志辉, 许浩, 毛晓芳. 双组元离心式喷注器的喷雾特性初步研究[J]. 实验流体力学, 2009, 23(4): 51-55.
[44] HAN P G, SEOL J H, HWANG S H, et al. The spray characteristics of swirl coaxial injectors[C]//41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada. Reston, Virigina: AIAA, 2003.
[45] GHORBANIAN K, SOLTANI M R, ASHJAEE M, et al. Liquid-liquid coaxial swirl injector performance prediction using general regression neural network[J]. Particle & Particle Systems Characterization, 2008, 25(5/6): 454-464.
[46] GHORBANIAN K, SOLTANI M, MORAD M, et al. Neural network prediction of a liquid-liquid coaxial swirl injector performance map[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada. Reston, Virigina: AIAA, 2005.
[47] RADKE C D, MEYER T R, HEINDEL T. Effect of injector exit geometry on atomization of a liquid-liquid double swirl coaxial injector using non-invasive laser, optical and X-ray techniques[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Cleveland, OH. Reston, Virginia: AIAA, 2014.
[48] KIM D, KIM S, HAN P, et al. Effect of recess on mixing and atomization characteristics of liquid-liquid swirl coaxial injectors[J]. Atomization and Sprays, 2010, 20(1): 41-55.
[49] WOODWARD R, MILLER K, BAZAROV V, et al. Injector research for Shuttle OMS upgrade using LOX/ethanol propellants[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cleveland, OH, USA. Reston, Virigina: AIAA, 1998.
[50] SEOL J H, HAN P G, JEONG W H, et al. Recess effects on spray characteristics of swirl coaxial injectors[J]. International Journal of Aeronautical and Space Sciences, 2003, 4(1): 26-33.
[51] LONG M, ANDERSON W, HUMBLE R. Bicentrifugal swirl injector development for hydrogen peroxide and non-toxic hypergolic miscible fuels[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, Indiana. Reston, Virigina: AIAA,2002.

Memo

Memo:
-
Last Update: 2020-06-25