|Table of Contents|

Study on system stability of deep-throttling staged combustion cycled engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年03期
Page:
41-48
Research Field:
研究与设计
Publishing date:

Info

Title:
Study on system stability of deep-throttling staged combustion cycled engine
Author(s):
CHEN Wen1 XING Lixiang1 XU Haohai1 LIU Zhirang2 LI Chunhong1
(1.Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; 2.Academy of Aerospace Propulsion Technology, Xi’an 710100, China)
Keywords:
oxygen-riched staged combustion cycled engine deep-throttling system stability sensitive parameter analysis numerical simulation
PACS:
V434.2
DOI:
-
Abstract:
During the deep-throttling process of staged combustion cycled engine, the system parameters vary in a large range. Under the low operating condition, the injection pressure drop and the pressure drop of feed system throttling element are relatively low, so the coupling instability between the propellant feed system and the thermal component is easy to occur. For the 10:1 deep-throttling oxygen-enriched staged combustion cycled engine, the coupling stability of the after-pump feed system and the gas system within the full operating range was studied by Nyquist stability analysis method. The results show that the stability margin of the closed-loop system composed of the fuel feed circuit and the gas circuit is low under low operating conditions of the oxygen-enriched staged combustion cycled engine. The system stability margin is able to be enhanced by improving the evaporation and combustion effect of the gas generator to shorten the time lag, increasing the gas residence time, and increasing the pressure drop near the gas generator

References:

[1] BETTS E, FREDERICK R. A historical systems study of liquid rocket engine throttling capabilities[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S.l.]:AIAA:2010.
[2] GIULIANO V, LEONARD T, ADAMSKI W, et al. A deep throttling demonstrator cryogenic engine for NASA’s lunar lander[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S.l.]:AIAA,2007.
[3] GIULIANO V J, LEONARD T G, LYDA R T, et al. Expanding the envelope of deep throttling technology in liquid oxygen/liquid hydrogen rocket engines for NASA exploration missions[Z]. 2010.
[4] 雷娟萍, 兰晓辉, 章荣军, 等. 嫦娥三号探测器7 500 N变推力发动机研制[J]. 中国科学(技术科学), 2014, 44(6): 569-575.
[5] DRESSLER G A. Summary of deep throttling rocket engines with emphasis on Apollo LMDE [R].AIAA 2006-5220.
[6] KIMURA T, SATO M, MASUOKA T, et al. Effects of deep throttling on rocket engine systems[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S.l.]:AIAA, 2010.
[7] 龚南妮,李春红. 大范围变工况液氧煤油燃气发生器热试研究[C]//第五届载人航天(国际)学术大会.西安:中国载人航天工程办公室,2018.
[8] CASIANO M J.Extensions to the time lag models for practical application to rocket engine stability design[D].Pennsylvania: Pennsylvania State University,2010.
[9] 邢理想, 杜大华, 李斌. 液氧/煤油补燃火箭发动机氧路低频动特性分析[J]. 火箭推进, 2009, 35(5): 24-28.
XING L X, DU D H, LI B. Low frequency characteristics analysis of LOX / kerosene staged combustion cycle rocket engine[J]. Journal of Rocket Propulsion, 2009, 35(5): 24-28.
[10] 刘上, 刘红军, 陈宏玉. 富氧燃气发生器动态特性分析[J]. 航空动力学报, 2013, 28(1): 226-232.
[11] 刘上, 刘红军, 陈建华, 等. 富氧燃气发生器-供应系统耦合稳定性研究[J]. 推进技术, 2013, 34(11): 1448-1458.
[12] 刘上, 刘红军, 王海燕. 富氧燃气发生器液氧供应系统频率特性分析[J]. 火箭推进, 2013, 39(2): 12-18.
LIU S, LIU H J, WANG H Y. Frequency characteristic analysis for LOX feed system of oxidizer-rich preburner[J]. Journal of Rocket Propulsion, 2013, 39(2): 12-18.
[13] 刘上, 刘红军, 陈建华, 等. 流量调节器在泵压式供应系统中的动力学特性[J]. 火箭推进, 2014, 40(2): 28-35.
LIU S, LIU H J, CHEN J H, et al. Dynamical characteristics of flow regulator in pump feed system[J]. Journal of Rocket Propulsion, 2014, 40(2): 28-35.
[14] 岳春国, 李进贤, 侯晓, 等. 变推力液体火箭发动机综述[J]. 中国科学(技术科学), 2009, 39(3): 464-468.
[15] 谭永华, 杜飞平, 陈建华, 等. 液氧煤油高压补燃循环发动机深度变推力系统方案研究[J]. 推进技术, 2018, 39(6): 1201-1209.
[16] 徐浩海, 李春红, 陈建华, 等. 深度变推力液氧煤油发动机初步方案研究[J]. 载人航天, 2016, 22(2): 150-155.
[17] 王海燕, 邢理想, 高玉闪, 等. 富氧补燃循环液氧煤油发动机深度推力调节方案对比分析[J]. 载人航天, 2019, 25(3): 389-396.
[18] 张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005.
[19] 格列克曼Б Ф. 液体火箭发动机自动调节[M]. 顾明初,译.北京: 宇航出版社, 1995.
[20] 刘国球,任汉芬,朱宁昌.液体火箭发动机原理[J].北京:宇航出版社,1993.

Memo

Memo:
-
Last Update: 2020-06-25