|Table of Contents|

Numerical study on aerodynamic optimization of liquid rocket engine turbine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年05期
Page:
21-26
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical study on aerodynamic optimization of liquid rocket engine turbine
Author(s):
YU Qing1ZHAO Hui2YUAN Weiwei1LI Aimin1ZHANG Yatai1
(1.Xi’an Aerospace Propulsion Institute,Xi’an 710100,China; 2.The Equipment Project Management Center of the Rocket Army, Beijing 100085, China)
Keywords:
liquid rocket engine turbine area ratio aerodynamic optimization
PACS:
V434.211
DOI:
-
Abstract:
During the development of a liquid rocket engine, in order to completely mix and condense the gas driving the turbine in the oxygen pre-pressurized turbo pump with the liquid oxygen in the main circuit, it is necessary to improve the turbine performance as much as possible.In this paper, the parallel multi-objective aerodynamic optimization design software was used to optimize the cascade design of the oxygen pre-pressurized turbo pump with the adaptive multi-objective differential evolution algorithm as the optimization tool.The calculation results show that after the optimization design of the turbine, the internal flow loss is reduced and then the overall efficiency is increased by 3.739%.The maximum stress of the two stage blades of the turbine rotor is less than the yield strength of the material, which meets the strength requirements.The turbine cascade can be optimized by the parallel multi-objective aerodynamic optimization method, which reduces the gas ratio and is beneficial to the complete dissolution of gas in the oxygen pre-pressurized turbo pump of rocket engine.

References:

[1] 李向阳, 王晓锋, 宣统, 等.液氧/煤油发动机煤油预压涡轮泵技术[J].火箭推进, 2009, 35(1): 16-20.
LI X Y, WANG X F, XUAN T, et al.Techniques of kerosene booster turbopump for LOX/kerosene staged combustion cycle engine[J].Journal of Rocket Propulsion, 2009, 35(1): 16-20.
[2] 关醒凡.泵的理论与设计[M].北京: 机械工业出版社, 1987.
[3] 奥夫相尼科夫,博罗夫斯基.液体火箭发动机涡轮泵装置原理与计算[M].任汉芬,夏德新,译.北京:中国航天工业总公司第十一研究所,1999.
[4] 廖懂华, 林奇燕, 叶小明.预压涡轮泵轴流式液力涡轮的流动结构研究[J].导弹与航天运载技术, 2018(6): 49-54.
[5] 严俊峰, 吴宝元, 逯婉若.基于Optimus的涡轮气动优化设计[J].火箭推进, 2008, 34(2): 13-17.
YAN J F, WU B Y, LU W R.Turbo aerodynamics optimization design based on optimus flat[J].Journal of Rocket Propulsion, 2008, 34(2): 13-17.
[6] 林奇燕, 金志磊, 王磊.超音速复速级涡轮的气动设计改进[J].火箭推进, 2014, 40(1): 65-70.
LIN Q Y, JIN Z L, WANG L.Aerodynamic redesign of supersonic Curtis-stage turbine[J].Journal of Rocket Propulsion, 2014, 40(1): 65-70.
[7] 宋立明, 李军, 丰镇平.跨音速透平扭叶片的气动优化设计研究[J].西安交通大学学报, 2005, 39(11): 1277-1281.
[8] 张金春, 李宇峰.某型高压汽轮机动叶栅的气动优化设计[J].汽轮机技术, 2007, 49(1): 12-13.
[9] 李旭升, 郑继坤, 吴玉珍.某型超音速冲击式氧涡轮叶型气动优化[J].火箭推进, 2014, 40(5): 44-49.
LI X S, ZHENG J K, WU Y Z.Aerodynamic optimization for blade profile of a supersonic impulse oxygen turbine[J].Journal of Rocket Propulsion, 2014, 40(5): 44-49.
[10] 张剑, 曾军, 葛宁, 等.涡轮三维叶片气动优化设计集成及应用[J].燃气涡轮试验与研究, 2015, 28(3): 1-7.
[11] 李志, 刘艳, 杨金广, 等.超声速涡轮叶型全局气动优化设计[J].推进技术, 2019, 40(5): 1051-1057.
[12] 陈远东.汽轮机调节级喷嘴组气动优化设计[J].汽轮机技术, 2015, 57(4): 251-254.
[13] 马洪波, 朱剑, 席平.基于参数化的涡轮叶片三维气动优化仿真[J].计算机仿真, 2008, 25(10): 27-30.
[14] 张金环, 周正贵.基于并行遗传算法的向心涡轮气动优化设计[J].航空发动机, 2015, 41(3): 39-43.
[15] 张明明, 赵曙光, 王旭.一种自适应多目标离散差分进化算法[J].计算机工程与应用, 2009, 45(26): 16-20.
[16] 刘志君, 高亚奎, 章卫国, 等.变邻域分解多目标自适应差分进化算法[J].控制理论与应用, 2014, 31(11): 1492-1501.
[17] DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J].IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[18] GINSBOURGER D, RICHO L R, CARRARO L.A multi-points criterion for deterministic parallel global optimization based on krigine[J].Journal of Global Optimization in Revision,2008, 1: 1-30.
[19] SASENA M J, PAPALAMBROS P, GOOVAERTS P.Exploration of metamodeling sampling criteria for constrained global optimization[J].Engineering Optimization, 2002, 34(3): 263-278.
[20] BISCHL B, WESSING S, BAUER N, et al.MOI-MBO: multiobjective infill for parallel model-based optimization[C]//Lecture Notes in Computer Science.Cham: Springer International Publishing, 2014: 173-186.

Memo

Memo:
-
Last Update: 2020-10-20