|Table of Contents|

Research on fluid transmission law and simulation of refillable start-basket with core structure exhaust pipe(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年05期
Page:
57-65101
Research Field:
研究与设计
Publishing date:

Info

Title:
Research on fluid transmission law and simulation of refillable start-basket with core structure exhaust pipe
Author(s):
SHAN LijieNING JirongXIAO Mingjie
(Xi’an Aerospace Propulsion Institute,Xi’an 710100,China)
Keywords:
refillable start-basket self-maintenance of propellant microgravity fluid mechanics interior corner flow
PACS:
V434.23
DOI:
-
Abstract:
Keeping the capillary components at the top of the exhaust pipe moistened and propellant self-retaining under microgravity or low interference acceleration is one of the key issues in the development of refillable start-basket.Based on the theory of microgravity fluid mechanics and interior corner flow, combined with the working process of the start-basket, the wetting problem of the capillary components at the top of the exhaust pipe was analyzed, and the core structure was designed as a solution to this problem.The simulation calculation was carried out by FLOW-3D software, which verified that the designed core can realize the medium guiding suction well, and has engineering applicationvalue.Further simulation analyzed the effect of the number of deflector on the diversion effect and the diversion effect of the cross plate.

References:

[1] 陈志坚, 邱中华.一种承力式表面张力贮箱[J].火箭推进, 2014, 40(1): 25-29.
CHEN Z J, QIU Z H.Bearing surface tension tank[J].Journal of Rocket Propulsion, 2014, 40(1): 25-29.
[2] ROLLINS J, GROVE R, JAEKLE D.Twenty-three years of surface tension propellant management system design, development, manufacture, test, and operation[C]//21st Joint Propulsion Conference.Reston, Virigina: AIAA, 1985.
[3] 潘海林,魏延明,王瑾.表面张力贮箱液体管理装置的网络分析[J].推进技术,1997,18(2):65-69.
[4] BLATT M H, AYDELOTT J C.Centaur propellant acquisition system[C]//AIAA/SAE 11th Joint Propulsion,Conference.Anaheim,California:AIAA,1975.
[5] FASTER D A.Final report acquisition/expulsion system for earth orbital propulsion system study[Z].1973.
[6] 宁继荣, 陈祖奎, 马键, 等.可再充填启动篮表面张力推进剂管理装置设计及试验研究[J].火箭推进, 2011, 37(2): 25-29.
NING J R, CHEN Z K, MA J, et al.Design and test of refillable start-basket surface tension PMD[J].Journal of Rocket Propulsion, 2011, 37(2): 25-29.
[7] 胡文瑞, 徐硕昌.微重力流体力学[M].北京: 科学出版社, 1999.
[8] 郑冬梅. 微液滴的表面张力驱动及其自运动行为研究[D]. 青岛: 青岛理工大学, 2010.
[9] 刘赵淼, 赵婷婷, 申峰.重力和接触角对表面张力贮箱内液体流动的影响[J].力学学报, 2015, 47(3): 430-440.
[10] COLLICOTT S, WEISLOGEL M.Corner radius effects on capillary instability in tank geometries[C]//37th Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2001.
[11] LENORMAND R, ZARCONE C.Role of roughness and edges during imbibition in square capillaries[C]//SPE Annual Technical Conference and Exhibition.Houston, Texas:Society of Petroleum Engineers, 1984.
[12] 魏月兴.微重力条件下航天器贮箱推进剂管理过程中的流动特性研究[D].长沙: 国防科学技术大学, 2013.
[13] WEISLOGEL M M, NARDIN C L.Capillary driven flow along interior corners formed by planar walls of varying wettability[J].Microgravity-Science and Technology, 2005, 17(3): 45-55.
[14] 李京浩.内角流动理论及其在板式表面张力贮箱设计中的应用研究[D].长沙: 国防科学技术大学, 2012.
[15] BLUNT M, ZHOU D, FENWICK D.Three-phase flow and gravity drainage in porous media[M]//Multiphase Flow in Porous Media.Dordrecht: Springer Netherlands, 1995: 77-103.
[16] IMAI R, IDETA T, ARIMA K, et al. Study on fluid behavior in vane type surface tension tank[C]//37th Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2001.
[17] 穆小强, 陈祖奎, 宁继荣, 等.海绵表面张力管理装置的设计与分析[J].火箭推进, 2010, 36(5): 13-16.
MU X Q, CHEN Z K, NING J R, et al.Design and analysis for the sponge surface tension propellant management device[J].Journal of Rocket Propulsion, 2010, 36(5): 13-16.
[18] 胡齐, 李永, 潘海林, 等.微重力环境下大叶片板式贮箱内流体行为的数值仿真与试验验证[J].空间控制技术与应用, 2013, 39(2): 58-62.
[19] 王夕, 王珏, 容易, 等.微重力下低温贮箱内推进剂相变仿真模型研究[J].导弹与航天运载技术, 2018(1): 36-40.
[20] 魏延明, 潘海林.全管理圆柱表面张力贮箱的微重力实验验证——静平衡与重定位[J].控制工程, 1997(5): 14-19.

Memo

Memo:
-
Last Update: 2020-10-20