|Table of Contents|

Study on improvement of V-groove process for metal-fluoroplastic composite valve spool(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年06期
Page:
103-108
Research Field:
工艺与材料
Publishing date:

Info

Title:
Study on improvement of V-groove process for metal-fluoroplastic composite valve spool
Author(s):
GUO Ye ZHAO Fei
(Xi'an Space Engine Company Limited, Xi'an 710100, China)
Keywords:
composite structure mechanical processing cutting parameter finite element simulation orthogonal test process improvement
PACS:
V463
DOI:
-
Abstract:
The metal-fluoroplastic composite sealing structure is mostly used in valves of liquid rocket engine.Generally, there is a V-shaped groove transition at the junction of metal and fluoroplastic.During processing the metal-fluoroplastic composite V-shaped groove, iron filings splashing out are likely to damage the fluoroplastic surface or cause poor surface roughness.In order to solve this problem, the tool parameters were designed by analyzing the structural characteristics of metal-fluoroplastic composite seal, summarizing the shortcomings of the traditional machining process and optimizing the cutting route.Using the finite element simulation technology, the 3D simulation software DEFORM was used to simulate the cutting process, and the average cutting force of the cutting process was calculated.In addition, the simulation results were optimized with the orthogonal test method.Finally, the processing method of metal-fluoroplastic composite V-groove was improved from three aspects of process method, tool parameters and cutting parameters.The proposed improvement scheme solves the problem of iron filings splashing during the metal-fluoroplastic composite V-groove processing process, and improves the production qualification rate of the metal-fluoroplastic composite valve spool.This improvement scheme has been applied to the production process of various composite valve spools.

References:

[1] 张贵田.高压补燃液氧煤油发动机[M].北京: 国防工业出版社,2005.
[2] 李文斌,王道虎,马飞,等.箭体阀门多余物预防与控制[J].航天制造技术,2014(4): 50-52.
[3] 牛书锋,张国悦.液氧/煤油发动机多余物自动检测技术[J].火箭推进,2019,45(4): 69-73. NIU S F,ZHANG G Y.Automatic detection technology of redundancy in LOX/kerosene engine[J].Journal of Rocket Propulsion,2019,45(4): 69-73.
[4] 王辉,李护林,崔超海.发动机总装多余物控制方法[J].航天制造技术,2003(5): 39-42.
[5] 蒋丽飞,肖雅文.关于提高聚四氟乙烯材料切削加工质量的研究[J].电子世界,2013(24): 241.
[6] 刘战强.先进切削加工技术及应用[M].北京: 机械工业出版社,2006.
[7] 尹婷.关于数控金属切削工艺的探析[J].现代工业经济和信息化,2017,7(11): 63-64.
[8] 赵飞,黄红耀.大直径薄壁球形阀芯加工工艺[J].火箭推进,2012,38(1): 62-67. ZHAO F,HUANG H Y.Machining technology of thin-walled spherical valve core with large diameter[J].Journal of Rocket Propulsion,2012,38(1): 62-67.
[9] 杨金发.航空难加工材料典型零件切削技术研究[J].金属加工(冷加工),2011(17): 6-9.
[10] 徐鸿翔,赵保科,赵飞,等.精密球体零件加工工艺的研究与应用[J].火箭推进,2016,42(5): 88-91. XU H X,ZHAO B K,ZHAO F,et al.Research and application of manufacturing technique for precision spherical parts[J].Journal of Rocket Propulsion,2016,42(5): 88-91.
[11] 王立新,张程焱,俎晓莉,等.切削参数对高强铝合金干切削加工表面形貌的影响[J].工具技术,2019,53(11): 29-33.
[12] 张世文,黄永鹤.仿真技术在机械设计制造中的应用探讨[J].黑龙江科学,2019,10(22): 136-137.
[13] 陶琪.考虑材料硬度影响的切削机理分析及切削仿真平台开发[D].长沙: 湖南大学,2017.
[14] 周怀彪,徐汝锋,杨学明,等.微细铣削中临界切削参数仿真与试验研究[J].制造技术与机床,2019(12): 101-104.
[15] 赵康.基于ABAQUS的二维切削仿真网格自适应划分[D].南京: 南京航空航天大学,2016.
[16] 孔虎星,郭拉凤,尹晓霞.基于ABAQUS的钛合金切削有限元分析[J].机电技术,2011,34(4): 22-23.
[17] 赵娜,刘二亮,张慧萍,等.金属切削变形常用本构模型研究进展[J].工具技术,2016,50(1): 3-8.
[18] 许洪昌,叶文华,梅胜敏.金属切削数据库建造技术研究[J].南京航空航天大学学报,1996,28(5): 651-655.
[19] 庄燕,范希营.基于正交试验的数控切削参数对铝合金表面Ra值的影响[J].机械制造与自动化,2016,45(6): 33-35.
[20] 李学光,王惠伟,张树仁,等.基于正交试验法的切削参数优化研究[J].机床与液压,2011,39(8): 17-19.

Memo

Memo:
-
Last Update: 1900-01-01