|Table of Contents|

Review on reliability technology of hydrogen-oxygen rocketengine components in development(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年02期
Page:
1-8
Research Field:
专论与综述
Publishing date:

Info

Title:
Review on reliability technology of hydrogen-oxygen rocketengine components in development
Author(s):
WANG Bo1JIANG Ping1ZHAO Qian2 ZHENG Mengwei3
1College of Systems Engineering,National University of Defense Technology, Changsha 410073, China; 2College of Information and Communication,National University of Defense Technology, Xi'an 710106, China; 3Beijing Institute of Aerospace Dynamics, Beijing 100076, China
Keywords:
hydrogen-oxygen rocket engine reliability technology reliability assessment reliability growth failure mechanism
PACS:
V438.4
DOI:
-
Abstract:
Hydrogen-oxygen rocket engine is the heart of rocket, and it must have extremely high reliability to guarantee a successful launch. A lot of reliability work has been carried out on hydrogen-oxygen rocket engine. During its development, the high reliability of hydrogen-oxygen rocket engine is ensured by the bottom-up approach, and robust designs and test verifications are usually carried out based on the failure mechanism of components. Therefore, the reliability work of components mainly focuses on the analysis, monitoring, test verification and design improvement based on the failure mechanism. Meanwhile, various tests of components and the system also provide data for reliability assessment. The reliability of components can be assessed through the test data, and the weakness can be identified based on the evaluation results to improve the design. In this paper, the reliability technology based on failure mechanism and test data are reviewed, the problems existing in the reliability of the engine components are analyzed, and the future development of component reliability technology is proposed.

References:

[1] 蔡国.飙, 李家文液体火箭发动机设计[M]. 北京: 北京航空航天大学出版社, 2011. [2] 谭松林, 李宝盛. 液体火箭发动机可靠性[M]. 北京: 中国宇航出版社, 2014. [3] 谢涛. 基于进化计算的液体火箭发动机故障诊断技术研究[D]. 长沙: 国防科学技术大学, 1998. [4] 朱恒伟. 液体推进剂火箭发动机地面试车故障检测与诊断研究[D]. 长沙: 国防科学技术大学, 1997. [5] DAVIDSON M, STEPHENS J. Advanced health managementsystem for the space shuttle main engine[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2004. [6] 谢光军. 液体火箭发动机涡轮泵实时故障检测技术及系统研究[D]. 长沙: 国防科学技术大学, 2006. [7] 夏鲁瑞. 液体火箭发动机涡轮泵健康监控关键技术及系统研究[D]. 长沙: 国防科学技术大学, 2010. [8] 魏鹏飞, 吴建军, 陈启智. 液体火箭发动机涡轮叶片结构特性的有限元分析[J]. 国防科技大学学报, 2005, 27(2): 29-31. [9] 刘士杰, 梁国柱. 航天飞机主发动机高压燃料涡轮泵的故障模式[J]. 航空动力学报, 2015, 30(3): 611-626. [10] SOLIMAN A A, ABD ELLAH A H, SULTAN K S. Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches[J]. Computational Statistics & Data Analysis, 2006, 51(3): 2065-2077. [11] IOANNIDES E, HARRIS T A. A new fatigue life model for rolling bearings[J]. Journal of Tribology, 1985, 107(3): 367-377. [12] Rolling bearings-dynamic load ratings and rating life: BS ISO 281[Z]. 2007-03-30. [13] 杜家磊, 闫攀运, 梁国柱. 涡轮泵流体静压轴承性能计算与试验研究[J]. 北京航空航天大学学报, 2018, 44(2): 322-332. [14] 郑继坤. 涡轮泵轴承的特点与发展展望[C]//第十一届全国低温工程大会. 贵州:[s.n.], 2013. [15] 殷谦, 张金容. 液体火箭发动机故障模式及分析[J]. 推进技术, 1997, 18(1): 22-25. [16] 唐飞, 李家文, 常克宇. 涡流冷却推力室中涡流结构的分析与优化[J]. 推进技术, 2010, 31(2): 165-169. [17] BIRYUKOV V I, TSARAPKINR A. Damping decrements in the combustion Chambers of liquid-propellant rocket engines[J]. Russian Engineering Research, 2019, 39(1): 6-12. [18] KRISHNAVENI A, CHRISTOPHER T, JEYAKUMAR K, et al. Probabilistic failure prediction of high strength steel rocket motor cases[J]. Journal of Failure Analysis and Prevention, 2014, 14(4): 478-490. [19] 宣智超, 谢恒, 袁宇. 某氢氧发动机推力室氢喷嘴烧蚀问题仿真分析[J]. 火箭推进, 2016, 42(5): 6-11.XUANZ C, XIE H, YUAN Y. Simulation analysis of hydrogen nozzle ablation problem existing in thrust chamber of a hydrogen oxygen engine[J]. Journal of Rocket Propulsion, 2016, 42(5): 6-11. [20] 石晓波, 刘占一, 郭灿琳. 燃气发生器喷注器内氧腔三维流动分析[J]. 火箭推进, 2013, 39(2): 6-11.SHIX B, LIU Z Y, GUO C L. Analysis of three-dimensional flow in oxygen chamber in injector of gas generator[J]. Journal of Rocket Propulsion, 2013, 39(2): 6-11. [21] 张晟, 金平, 蔡国飙. 推力室冷却通道结构可靠性仿真及参数敏感性分析[J]. 航空动力学报, 2018, 33(11): 2651-2659. [22] SON M, KO S, KOO J. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines[J]. Journal of Thermal Science, 2014, 23(3): 259-268. [23] 林晔, 喻天翔, 崔卫民, 等. 航天阀门的可靠性试验方法研究[J]. 制造业自动化, 2010, 32(6): 95-97. [24] 王志, 王建军, 刘玉, 等. 火箭发动机阀门开关动作状态识别技术研究[J]. 推进技术, 2018, 39(5): 1171-1176. [25] 曾庆祥. 阀门产品常见泄漏问题及解决办法[J]. 中国新技术新产品, 2016(4): 172. [26] 谢建超, 秦春云, 曹京京. 阀门泄漏量差压检漏技术研究[J]. 中国科技博览, 2016,(20). [27] 林晔, 喻天翔, 崔卫民, 等. 航天阀门的可靠性试验方法研究[J]. 制造业自动化, 2010, 32(6): 95-97. [28] 杜天恩. 高压液体火箭发动机新结构密封[J]. 推进技术, 2000, 21(4): 16-19. [29] 赵经明. 涡轮泵表面织构间隙密封-转子系统动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [30] 张树强, 王良, 赵伟刚. 液体火箭发动机涡轮泵用机械密封温度场及热载变形研究[J]. 火箭推进, 2014, 40(5): 92-98.ZHANGS Q, WANG L, ZHAO W G. Research on temperature field and heat deformation of mechanical seal in liquid rocket engine turbopump[J]. Journal of Rocket Propulsion, 2014, 40(5): 92-98. [31] 单晓亮, 胡欲立. 基于Ansys的机械密封环温度场分析[J]. 润滑与密封, 2006, 31(9): 116-119. [32] 王玉, 王晓峰, 卑喜敏. 航空发动机密封组件平面度误差检测技术研究[J]. 航空精密制造技术, 2012, 48(4): 51-52. [33] 姜祥周, 师义民, 沈政. 无失效数据下液体火箭发动机可靠性多层Bayes估计[J]. 航天控制, 2008, 26(3): 88-91. [34] 韩明. 无失效数据下液体火箭发动机的E-Bayes可靠性分析[J]. 航空学报, 2011, 32(12): 2213-2219. [35] 王婷婷, 师义民, 刘英. 某型号液体火箭发动机可靠性分析[J]. 航天控制, 2009, 27(6): 79-82. [36] LAMONT C, MAZZA F, DONALDSON N. A Bayesian demonstration of reliability for encapsulated implanted electronics[C]//2019 9th International IEEE/EMBS Conference on Neural Engineering(NER). San Francisco, CA:IEEE, 2019. [37] 茆诗松, 李亿民, 陆淑兰, 等. 恒定应力加速寿命试验中无失效数据的处理[J]. 应用概率统计, 1993, 9(2): [38] BREMERMAN M V. Practical Bayesian methods for determining device failure rates from zero-failure data[C]//2013 Proceedings Annual Reliability and Maintainability Symposium(RAMS). Orlando, FL: IEEE, 2013. [39] 宁江凡, 鄢小清, 张士峰. 液体火箭发动机无失效条件下的可靠性分析方法[J]. 国防科技大学学报, 2006, 28(5): 22-25. [40] 徐彬涓. 发动机阀门可靠性预测技术研究[D]. 长沙: 国防科技大学, 2017. [41] 胡丹丹. 无失效数据下轴承可靠性评估方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2016. [42] 蔡忠义, 陈云翔, 庄骏, 等. 基于研制试验数据的可靠性综合评估方法[J]. 火力与指挥控制, 2014, 39(12): 70-72. [43] 王华伟, 周经伦, 何祖玉, 等. 液体火箭发动机可靠性增长规划研究[J]. 宇航学报, 2003, 24(3): 287-289. [44] 王华伟. 液体火箭发动机可靠性增长分析与决策研究[J]. 宇航学报, 2004, 25(6): 655-658. [45] 刘琦, 冯静, 周经伦. 基于Gompertz模型的液体火箭发动机可靠性增长分析[J]. 航空动力学报, 2004, 19(3): 419-423. [46] 冯静, 刘琦, 周经伦, 等. Weibull分布产品零失效下的可靠性增长研究[J]. 系统工程理论方法应用, 2004, 13(1): 85-88. [47] SMITH A F M. A Bayesian note on reliability growth during a development testing program[J]. IEEE Transactions on Reliability, 1978, R-26(5): 346-347. [48] GROSS W A J. The Barlow-Scheuer reliability growth model from a Bayesian viewpoint[J]. Technometrics, 1978, 20(3): 249-254. [49] 周源泉, 刘文生, 田胜利. 双参数指数分布的可靠性评估(Ⅰ)[J]. 质量与可靠性, 2004(1): 5-10. [50] TIBSHIRANI R. Noninformative priors for one parameter of many[J]. Biometrika, 1989, 76(3): 604-608. [51] MINTON P D, RAIFFA H, SCHLAIFER R. Applied statistical decision theory[J]. The American Mathematical Monthly, 1962, 69(1): 72. [52] JAYNES E T. On the rationale of maximum-entropy methods[J]. Proceedings of the IEEE, 1982, 70(9): 939-952. [53] LINDLEY, D V. On a measure of the information provided by an experiment[J]. Annals of Mathematical Statistics, 1956, 27(4): 986-1005. [54] 李芷筠, 戴志辉, 焦彦军. 小样本失效数据下保护可靠性的贝叶斯-蒙特卡罗评估方法[J]. 电力系统及其自动化学报, 2016, 28(5): 9-14. [55] 王燕萍, 吕震宙. 一种基于Gibbs抽样的可靠性增长Bayes方法[J]. 西北工业大学学报, 2007, 25(6): 784-788. [56] GUIDA M, PULCINI G. Automotive reliability inference based on past data and technical knowledge[J]. Reliability Engineering & System Safety, 2002, 76(2): 129-137.[LinkOut] [57] KLEYNER A, BHAGATH S, GASPARINI M, et al. Bayesian techniques to reduce the sample size in automotive electronics attribute testing[J]. Microelectronics Reliability, 1997, 37(6): 879-883. [58] 刘琦, 冯静, 周经伦. 基于专家信息的先验分布融合方法[J]. 中国空间科学技术, 2004, 24(3): 13-16. [59] COOLEN F P A. On Bayesian reliability analysis with informative priors and censoring[J]. Reliability Engineering & System Safety, 1996, 53(1): 91-98. [60] 徐承相, 马瑞萍, 张笑. 基于Bayes方法的可靠性试验评估分析[J]. 四川兵工学报, 2009, 30(12): 65-67. [61] 冯静, 刘琦, 周经伦, 等. 相关函数融合法及其在可靠性分析中的应用[J]. 系统工程与电子技术, 2003, 25(6): 682-684. [62] 冯静, 周经伦. 基于Bayes-模糊逻辑算子的小子样可靠性信息融合方法[J]. 航空动力学报, 2008, 23(9): 1633-1636. [63] 冯静. 小子样复杂系统可靠性信息融合方法与应用研究[D]. 长沙: 国防科学技术大学, 2004.

Memo

Memo:
-
Last Update: 1900-01-01