|Table of Contents|

Dynamic model study of metal bellows accumulator for liquidlaunch vehicles(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年02期
Page:
81-86
Research Field:
研究与设计
Publishing date:

Info

Title:
Dynamic model study of metal bellows accumulator for liquidlaunch vehicles
Author(s):
ZHANG Qingsong1FAN Ruixiang2GA Yongjing1LUO Meng1
1Beijing Institute of Astronautical Systems Engineering,Beijing 100076,China; 2China Academy of Launch Vehicle Technology,Beijing 100076,China
Keywords:
accumulator compliance parameter dynamic model charge duct impedance characteristic
PACS:
V421.4
DOI:
-
Abstract:
Accumulator is an important device used for POGO prevention of liquid rockets. In this paper, a general and accurate dynamic model of bellows accumulator was developed by theoretical derivation. A corrected method of compliance and inertia parameters considering the mechanical stiffness, moving mass and number of bellows subassembly was present. This model improves the precision of the frequency calculation of the fluid feeding system. As to the accumulator with charging duct, a distributed parameter model was introduced to research the influence of a long duct for the accumulator. The research shows that a long charging duct will make additional volume and meantime introduce low frequency vibration, which affects the accumulator performance.

References:

[1] OPPENHEIM B W, RUBIN S. Advanced Pogo stability analysis for liquid rockets[J]. Journal of Spacecraft and Rockets, 1993, 30(3): 360-373. [2] 张青松, 张兵. 大型液体运载火箭POGO动力学模型研究[J]. 中国科学: 技术科学, 2014, 44(5): 525-531. [3] RANSOM D,DOIRON H. Experimentally validated pogo accumulator flow resistance model[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego, California: AIAA, 2011. [4] LARSEN C E.NASA experience with Pogo in spaceflight vehicles[R].RTO-MP-AVT-152,2008. [5] 张智. 载人运载火箭技术回顾与展望[J]. 宇航总体技术, 2018, 2(2): 56-61. [6] 汤波, 于子文, 张青松. 利用稳定性相图进行的POGO抑制设计[J]. 强度与环境, 2009, 36(1): 32-38. [7] 唐冶, 方勃, 张业伟, 等. 推进系统参数变化对液体火箭纵向振动响应的影响分析[J]. 振动与冲击, 2015, 34(12): 189-194. [8] 严海, 方勃, 黄文虎. 液体火箭的POGO振动研究与参数分析[J]. 导弹与航天运载技术, 2009(6): 35-40. [9] 万屹仑, 付欣毓, 张黎辉, 等. 注气式蓄压器系统工作特性仿真分析[J]. 火箭推进, 2018, 44(3): 37-42.WANY L, FU X Y, ZHANG L H, et al. Simulation analysis on operating characteristics of gas-filled accumulator system[J]. Journal of Rocket Propulsion, 2018, 44(3): 37-42. [10] 司徒斌, 高普云. 低温运载火箭POGO抑制系统研究[J]. 低温工程, 2006(2): 58-64. [11] 王亚军, 陈牧野, 周浩洋. 采用有限元方法的平板锥形金属膜盒内压柱失稳研究[J]. 导弹与航天运载技术, 2020(1): 7-13. [12] 张婷, 满满, 张翼, 等. 运载火箭用蓄压器膜盒容积测量方法及影响因素研究[J]. 液压与气动, 2020(4): 87-90.ZHANG T, MAN M, ZHANG Y, et al. Measurement method and influencing factors of the volume of the accumulator box[J]. Chinese Hydraulics & Pneumatics, 2020(4): 87-90. [13] 廖少英. POGO蓄压器变频降幅特性分析[J]. 上海航天, 2002, 19(1): 32-35. [14] 靳爱国. 蓄压器对发动机试车液路固有频率影响分析[J]. 火箭推进, 2005, 31(5): 11-14.JINA G. Effect of buffer on frequency of engine flow system in hot tests[J]. Journal of Rocket Propulsion, 2005, 31(5): 11-14. [15] 任辉, 任革学, 荣克林, 等. 液体火箭Pogo振动蓄压器非线性仿真研究[J]. 强度与环境, 2006, 33(3): 1-6. [16] 马道远, 王其政, 荣克林. 液体捆绑火箭POGO稳定性分析的闭环传递函数法[J]. 强度与环境, 2010, 37(1): 1-7. [17] 王庆伟, 王小军, 张青松, 等. 液体火箭POGO振动缩聚模型研究[J]. 振动与冲击, 2019, 38(1): 8-13. [18] 刘涛, 刘锦凡, 唐国安. 液体火箭POGO振动分析的矢量拟合法[J]. 振动与冲击, 2019, 38(19): 26-30. [19] 刘锦凡,孙丹,陈雪巍,等.蓄压器膜盒机械刚度对液体火箭POGO 振动影响研究[J].振动与冲击,2016(19):168-171. [20] 王其政,黄怀德,姚德源.结构耦合动力学[M].北京:宇航出版社,1999.

Memo

Memo:
-
Last Update: 1900-01-01