|Table of Contents|

Structural optimization design for variable nozzle flap of airbreathing engines(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年03期
Page:
52-59
Research Field:
研究与设计
Publishing date:

Info

Title:
Structural optimization design for variable nozzle flap of airbreathing engines
Author(s):
SHI Bo1SHENG Gang2HUANG Xuegang1GAO Chao1FU Lili1
1.Xi'an Aerospace Propulsion Institute,Xi'an 710100,China; 2.The 2nd Military Represent Office of the Rocket Force Equipment Department in Xi'an,Xi'an 710100 China
Keywords:
airbreathing engine variable nozzle divergent flap multi-objective optimization topology optimization
PACS:
V433
DOI:
-
Abstract:
The structure optimization for divergent flap on variable nozzle of airbreathing engine was studied.According to the conventional stiffener layout of adjusting flap,the parametric model was established.In this model,shell element and beam element were used instead of thin-walled structure and stiffener.Through the multi-objective optimization of this model,the structure scheme of conventional layout was obtained.Topology optimization for divergent flap was carried out.The feasible structure was obtained by re-modeling.By comparing the structures obtained by the above two methods,the weight is reduced by 14.8%,the maximum deformation is reduced by 38%,and the maximum structural stress is equivalent,but the structure stress distribution is more uniform in the topology optimization scheme.The structure scheme by topology optimization has the advantages of high material utilization,light weight and good performance.For the optimal design of thin-walled stiffened structure of variable nozzle flap,the topology optimization has a good prospect in engineering application.

References:

[1] 梁俊龙,吴宝元,李斌.几何结构可调的亚燃冲压发动机性能研究[J].火箭推进,2010,36(2): 1-4.LIANG J L,WU B Y,LI B.Performance research of adjustable geometric structure ramjet engine[J].Journal of Rocket Propulsion,2010,36(2): 1-4.
[2] 刘大响.航空发动机设计手册第7册:进排气装置[M].北京:航空工业出版社,2000.
[3] STOK B,MIHELIC A.A two-stage design optimization of shell structures[C]//Developments in Computational Engineering Mechanics.Edinburgh,United Kingdom.Stirlingshire: Civil-Comp Press,1983.
[4] LAM Y C,SANTHIKUMAR S.Automated rib location and optimization for plate structures[J].Structural and Multidisciplinary Optimization,2003,25(1): 35-45.
[5] 刘齐茂,燕柳斌.基于边缘纤维屈服准则的薄板结构加强筋的优化设计法[J].机械设计,2007,24(4): 33-34.
[6] 赵岭,陈五一,马建峰.基于王莲叶脉分布的机床横梁筋板结构仿生优化[J].高技术通讯,2008,18(8): 806-810.
[7] 杨永彬,陈五一,赵大海.机床立柱高比刚度结构仿生设计[J].北京航空航天大学学报,2008,34(9): 991-994.
[8] 岑海堂,陈五一.小型翼结构仿生设计与试验分析[J].机械工程学报,2009,45(3): 286-290.
[9] 丁晓红,李国杰,蔡戈坚,等.薄板结构的加强筋自适应成长设计法[J].中国机械工程,2005,16(12): 1057-1060.
[10] 王栋,李正浩.薄板结构加筋布局优化设计方法研究[J].计算力学学报,2018,35(2): 138-143.
[11] 张卫红,章胜冬,高彤.薄壁结构的加筋布局优化设计[J].航空学报,2009,30(11): 2126-2131.
[12] 钟焕杰,金海波.基于拓扑优化的薄板加筋方法研究[J].机械设计与制造工程,2015,44(1): 41-45.
[13] 张俊华,张绪香,吕玉林,等.导弹结构强度计算手册[M].北京:国防工业出版社,1975.
[14] 赵阳, 许博谦, 李玉韦. 航天半硬壳结构模型简化方法研究[J]. 长春理工大学学报(自然科学版), 2019, 42(3): 1-6.
[15] 王玉新. 喷气发动机轴对称推力矢量喷管[M]. 北京: 国防工业出版社, 2006
[16] 胡建平, 黄磊, 王留柱, 等. 基于参数敏感度分析的移栽机提升支架轻量化设计[J]. 机械设计与制造, 2017(1): 38-42.
[17] 艾延廷, 刘海月, 田晶, 等. 薄壁机匣螺栓连接结构多目标优化设计[J]. 推进技术, 2019, 40(4): 876-883.
[18] 付稣昇.ANSYS workbench 17.0数值模拟与实例精解[M].北京:人民邮电出版社,2017.
[19] 于嘉腾.基于可靠性优化的机翼设计研究[D].沈阳: 沈阳航空航天大学,2015.
[20] 张雷,张立华,王家序,等.基于响应面的柔轮应力和刚度分析[J].浙江大学学报(工学版),2019,53(4): 638-644.
[21] 唐林,许志沛,贺田龙,等.基于响应面法的多节伸缩臂设计优化[J].机械设计与制造,2020(2): 83-86.
[22] BENDSØE M P,KIKUCHI N.Generating optimal topologies in structural design using a homogenization method[J].Computer Methods in Applied Mechanics and Engineering,1988,71(2): 197-224.
[23] 何芝,雷阳,封硕,等.基于SIMP法的变刚度结构拓扑优化研究[J].装备制造技术,2020(1): 8-14.
[24] 程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1): 1-9.
[25] 洪清泉,赵康,张攀,等.OptiStruct & HyperStudy 理论基础与工程应用[M].北京:机械工业出版社,2012.

Memo

Memo:
-
Last Update: 1900-01-01