|Table of Contents|

Characteristics of the multi-start,integrated propulsion system based on the differential pneumatic supercharger(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年01期
Page:
22-29
Research Field:
研究与设计
Publishing date:

Info

Title:
Characteristics of the multi-start,integrated propulsion system based on the differential pneumatic supercharger
Author(s):
ZHAO XiaohuiZHANG JinrongSHAN LeiSUN HaiyuWANG Xinglu
(Xi’an Aerospace Propulsion Institute,Xi’an 710100,China)
Keywords:
differential pneumatic supercharger multi-starting integration propulsion system
PACS:
V434.24
DOI:
-
Abstract:
The more weight and space for the whole flight mission will be economized by use of the dynamical power system of upper stage with the characters of high performance,light weight,small size,while the weight and scale of other payloads will be increased. The turbopump-feed dynamical system integrated with the orbit and attitude control is composed of the main engine,engines for attitude control,and the integration assemblies. The system-level test results of the dynamical power system show that:firstly,it can be realized that the integrated supply of the propellant to the attitude control engines and the main engine through sharing the main tank; secondly,the main engine should be multi-started more than 20 times by use of a pneumatic supercharger to pressurize the propellant for the generator; finally, the time spending on start-up acceleration(T90)can be reduced to less than 3 s. That the high integration of the propulsion system of the upper stage can be realized and the overall performance can be improved by use of this integrated system technology.

References:

[1] GOETZ A,HAGEMANN G,KRETSCHMER J,et al. Advanced upper stage propulsion concept:The expansion-deflection upper stage[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2005.
[2] 马昆,郭武,关嵩,等.上面级发展现状及趋势分析[J].导弹与航天运载技术,2013(6):24-28.
[3] WELTON D,BENSKY M,HILAND J. Variable-thrust liquid propellant rocket engines[R].AIAA1963-0268.
[4] KIM D,ADAMS J,GRANT C,et al. Advanced upper stage,a conceptual upper stage design for ALS[C]//26th Joint Propulsion Conference. Reston,Virigina:AIAA,1990.
[5] 方宝东,陈昌亚,王伟,等.俄罗斯Fregat上面级[J].上海航天,2012,29(3):34-37.
[6] 王衍方,李平. 阿里安5单组元姿控发动机系统[J].火箭推进,1997,23(6):7-30.
WANG Y F, LI P. Ariane 5 single component attitude control engine system[J].Journal of Rocket Propulsion, 1997,23(6):7-30.
[7] 张金容,陈伟,张敏贵,等.液体火箭上面级发动机系统方案选择及典型系统方案[J].导弹与航天运载技术,2008(2):7-12.
[8] 刘国球. 液体火箭发动机原理[M].北京:中国宇航出版社,2005.
[9] 加洪.液体火箭发动机结构设计[M].任汉芬,颜子初,等译.北京:宇航出版社,1992.
[10] 张涛,唐虎,周江平,等.可贮存推进剂泵压式液体火箭发动机多次启动系统研究[J].火箭推进,2010,36(3):15-18.
ZHANG T,TANG H,ZHOU J P,et al. Study on the multi-start system of turbopump-fed rocket engine with storable propellants[J].Journal of Rocket Propulsion,2010,36(3):15-18.
[11] 武晓欣,李春红. 姿轨控一体化液氧/煤油上面级发动机初步方案研究[C]//中国宇航学会液体火箭推进专业委员会2015 年学术研讨会论文集. 上海:[s.n.],2015.
[12] WHITEHEAD J. Free piston pumps for miniature rocket propulsion[C]//27th Joint Propulsion Conference. Reston,Virigina:AIAA,1991.
[13] WHITEHEAD J. Reciprocating pump systems for space propulsion[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2004.
[14] 尤裕荣,王春民,朱建国. 液体火箭发动机气动活塞泵性能特性仿真[J].导弹与航天运载技术,2014(2):9-14.
[15] 王新华,王建新,齐明侠,等.液压驱动往复泵活塞运动特性分析[J].石油机械,2002,30(5):22-24.
[16] 陈艳霞,关世玺,唐家鹏. 火箭发动机启动过程动力学研究[J].弹箭与制导学报,2010,30(5):131-132.
[17] 蒲光荣,单磊,赵晓慧,等.泵压式多次启动发动机启动过程仿真研究[J].火箭推进,2019,45(5):17-24.
PU G R,SHAN L,ZHAO X H,et al. Simulation study on start-up processes of a multi-startup turbopump-fed rocket engine[J].Journal of Rocket Propulsion,2019,45(5):17-24.
[18] 张金容,汪亮. 液体火箭发动机启动过程的动态仿真计算[J].低温工程,2008(2):22-27.
[19] 毛晓芳,汪凤山,杨晓红,等.小推力双组元姿控发动机性能研究[J].推进技术,2012,33(6):987-990.
[20] 林革,章荣军,李福云. 上面级推进系统发展趋势[J].火箭推进,2002,28(1):18-26.
LIN G, ZHANG R J, LI F Y.Development trend of upper stage propulsion system[J].Journal of Rocket Propulsion,2002,28(1):18-26.

Memo

Memo:
-
Last Update: 1900-01-01