|Table of Contents|

Key manufacturing technology for large thrust LH2/LOX cycle engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年02期
Page:
117-126
Research Field:
目次
Publishing date:

Info

Title:
Key manufacturing technology for large thrust LH2/LOX cycle engine
Author(s):
SUN Jiguo1HE Xueqing2YANG Daijun2ZHENG Mengwei1XU Kunhe2
(1.Beijing Aerospace Propulsion Institute, Beijing 100076, China 2.Capital Aerospace Machinery Corporation Limited, Beijing 100076, China)
Keywords:
a new generation of launch vehicle LH2/LOX engine key manufacturing technology precision assembly engineering prototype
PACS:
V463
DOI:
-
Abstract:
In order to meet the needs of large thrust and large size 220 tf staged combustion cycle LH2/LOX engine, the research on process and technology of LH2/LOX engine was carried out for thrust chamber, precombustion chamber, turbopump, valve, pipeline and other systems of LH2/LOX engine.The key components of 220 tf staged combustion cycle LH2/LOX engine were manufactured by using spinning forming, diffusion brazing, inertia friction welding, additive manufacturing, powder metallurgy and precision casting and other processes.The research on high precision assembly technology was carried out for the large and heavy components of the 220 tf thrust LH2/LOX staged combustion cycle engine, the precision assembly of the large and heavy components was realized by using automatic assembly, digital assembly, automatic measurement, positioning and other process.Through the process and technology research, the first engineering prototype of 220 tf high-pressure staged combustion cycle LH2/LOX engine was successfully developed, which improved the overall manufacturing level of LH2/LOX engine and met the development requirements of a new generation of launch vehicle.

References:

[1] 何巍, 刘伟, 龙乐豪.重型运载火箭及其应用探讨[J].导弹与航天运载技术, 2011(1):1-5.
[2] 王辉, 张宇.重型运载火箭控制系统关键技术探讨[J].航天控制, 2013, 31(6):22-26.
[3] 张绿云, 龙雪丹, 黄长梅, 等.国外新一代重型运载火箭发展分析[J].国际太空, 2021(5):26-31.
[4] 张小平, 丁丰年, 马杰.我国载人登月重型运载火箭动力系统探讨[J].火箭推进, 2009, 35(2):1-6.
ZHANG X P, DING F N, MA J.Scheme of Chinese manned lunar rocket and its propulsion system[J].Journal of Rocket Propulsion, 2009, 35(2):1-6.
[5] 刘欣, 王国庆, 李曙光, 等.重型运载火箭关键制造技术发展展望[J].航天制造技术, 2013(1):1-6.
[6] 林奔, 黄超, 马云龙, 等.重型运载火箭结构材料选材方案研究与启示[J].轻合金加工技术, 2020, 48(6):14-18.
[7] 郑大勇, 张卫红, 石文靓.未来大推力氢氧发动机方案初步探讨[J].导弹与航天运载技术, 2012(1):1-6.
[8] 郑孟伟, 岳文龙, 孙纪国, 等.我国大推力氢氧发动机发展思考[J].宇航总体技术, 2019, 3(2):12-17.
[9] 郑大勇, 陶瑞峰, 张玺, 等.大推力氢氧发动机关键技术及解决途径[J].火箭推进, 2014, 40(2):22-27.
ZHENG D Y, TAO R F, ZHANG X, et al.Study on key technology for large thrust LOX/LH2 rocket engine[J].Journal of Rocket Propulsion, 2014, 40(2):22-27.
[10] 宋德坤.重型运载火箭220吨级发动机完成首台工程样机生产:标志着该发动机关深阶段研制工作圆满完成[N].中国航天报,2021-07-30(1).
[11] 邹鹤飞, 徐坤和, 张芹梅, 等.运载火箭氢氧发动机推力室内壁用铜合金材料研究进展[J].航空制造技术, 2015, 58(S2):50-56.
[12] GROH H C, ELLIS D L, LOEWENTHAL W S.Comparison of GRCop-84 to other Cu alloys with high thermal conductivities[J].Journal of Materials Engineering and Performance, 2008, 17(4):594-606.
[13] 丁兆波, 李怡.国外大推力氢氧推力室制造技术现状与趋势[J].航天制造技术, 2012(2):1-4.
[14] 李仁庚.高强高导Cu(Cr)Zr系合金微结构设计与调控[D].大连:大连理工大学, 2019.
[15] HUANG Y C, LI M, MA C Q, et al.Flow behaviour constitutive model of CuCrZr alloy and 35CrMo steel based on dynamic recrystallization softening effect under elevated temperature[J].Journal of Central South University, 2019, 26(6):1550-1562.
[16] 郭利平,何学青,阳代军,等.Cu-0.5Cr-0.1Zr合金热压缩变形行为[J].金属热处理,2021,46(9):180-187.
[17] RUSSELL C, CARTER R, ELLIS D, et al.Friction stir welding of GR-cop 84 for combustion chamber liners[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.Reston, Virginia:AIAA, 2004.
[18] 王兴坤.难变形金属筒形件热强旋成形机理及工艺参数优化[D].广州:华南理工大学, 2018.
[19] 丁新玲.液体火箭发动机制造技术发展现状[J].航天制造技术, 2005(6):13-17.
[20] 罗巍, 张晗翌, 矫慧, 等.液体火箭发动机推力室快速制造技术[J].航天制造技术, 2020(5):60-65.
[21] 侯亚娟, 毕凯, 董礼, 等.大推力氢氧发动机铜合金内壁数控加工技术[J].工具技术, 2021, 55(3):72-75.
[22] 丁兆波, 孙纪国, 路晓红.国外典型大推力氢氧发动机推力室技术方案综述[J].导弹与航天运载技术, 2012(4):27-30.
[23] 赵子俊.推力室外壁高效电铸制造基础研究[D].南京:南京航空航天大学, 2020.
[24] 单黎波, 金作花, 贺云龙, 等.液体火箭发动机钎焊、扩散焊质量检测技术研究[J].火箭推进, 2009, 35(6):47-51.
SHAN L B,JIN Z H,HE Y L, et al.Testing techniques of brazing and diffusion welding quality of Liquid rocket engine[J].Journal of Rocket Propulsion,2009,35(6):47-51.
[25] 邱惠中.先进钎焊技术在航天器上的应用[J].宇航材料工艺, 2000, 30(3):11-13.
[26] 宋定延, 沈素云, 黄群.F150钢钎焊性能研究[J].宇航材料工艺, 1988, 18(3):39-45.
[27] FINT J, KUCK F, SCIORELLI F.Development of channel wall nozzles for use on liquid propellant rocket engine[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston, Virginia:AIAA, 2005.
[28] 邹鹤飞, 李雪飞, 庞伟强, 等.1Cr18Ni9Ti扩散钎焊接头组织及性能[J].焊接, 2019(12):42-45.
[29] 林志峰, 陈志凯, 邢斌, 等.钎焊温度对GH4169/1Cr18Ni9Ti接头组织和性能影响研究[J].焊接, 2017(8):25-28.
[30] TROLLHEDEN S, BERGENLID B, PALMNAS U, et al.Turbopump turbines developed by volvo[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina:AIAA, 2004.
[31] 刘晓, 康小明, 赵万生.带叶冠整体式涡轮盘的多轴联动数控电火花加工[J].航空制造技术, 2009, 52(2):100-102.
[32] 张昆, 杨一明, 申泱, 等.双级带叶冠涡轮盘电火花加工电极优化设计[J].电加工与模具, 2018(4):18-19.
[33] 张昆, 白淳, 吕琳, 等.大栅距等锥形带叶冠涡轮盘电火花加工电极优化设计[J].电加工与模具, 2016(6):23-24.
[34] 罗键, 陈欢, 刘姗姗.惯性摩擦焊接头特性的研究现状[J].焊接, 2017(1):13-17.
[35] 赵强, 祝文卉, 邵天巍, 等.惯性摩擦焊在航空发动机转子制造中的应用[J].航空动力, 2019(5):41-44.
[36] 王博.粉末冶金FGH4169高温合金的制备、组织、力学性能及热加工性能研究[D].长沙:中南大学, 2014.
[37] 张绪虎, 徐桂华, 孙彦波.钛合金热等静压粉末冶金技术的发展现状[J].宇航材料工艺, 2016, 46(6):6-10.
[38] 李一平, 龚燚, 崔潇潇, 等.粉末冶金Ti-5Al-2.5Sn ELI合金稳定性分析[J].钛工业进展, 2019, 36(3):22-25.
[39] GRADL P R, GREENE S E, PROTZ C, et al.Additive manufacturing of liquid rocket engine combustion devices:a summary of process developments and hot-fire testing results[C]//2018 Joint Propulsion Conference.Reston, Virginia:AIAA, 2018.
[40] 董鹏, 梁晓康, 赵衍华, 等.激光增材制造技术在航天构件整体化轻量化制造中的应用现状与展望[J].航天制造技术, 2018(1):7-11.
[41] 李权, 王福德, 王国庆, 等.航空航天轻质金属材料电弧熔丝增材制造技术[J].航空制造技术, 2018, 61(3):74-82.
[42] 宋浩, 韩冬, 赵军, 等.钛合金熔模精密铸造技术的发展现状[J].铸造, 2020, 69(12):1304-1311.
[43] 谢秋峰.K4169合金涡壳段铸件精密铸造工艺研究[D].沈阳:东北大学, 2012.
[44] 李光俊, 罗铮, 袁胜, 等.连续多弯导管成形仿真系统开发与应用[J].航空制造技术, 2018, 61(18):43-47.
[45] 郭建军, 杨立乐, 戴钦, 等.薄壁弯管成形工艺分析及弯管模设计[J].模具工业, 2021, 47(3):18-21.
[46] 刘琪.薄壁管材小弯曲半径成形技术研究[D].南昌:南昌航空大学, 2018.
[47] 刘东,李岩松,王璐.基于三维数字样机的运载器装配工艺规划技术[J].装备制造技术,2020(4):116-118.
[48] 刘东, 徐鹤洋.可视锥碰撞检测理论在虚拟装配中的研究[J].中国科技信息, 2019(6):90-91.
[49] 吴昊夫, 默静飞, 王贺.螺栓自动拧紧技术在阀门产品装配中的应用[J].阀门, 2013(4):18-21.
[50] 窦海霞,胡新平,韩朕.虚拟装配技术应用探索[J].计算机应用,2008(5):38-41.

Memo

Memo:
-
Last Update: 1900-01-01