|Table of Contents|

Recent development of radiation cooling body materials for liquid rocket engines(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年01期
Page:
12-20
Research Field:
目次
Publishing date:

Info

Title:
Recent development of radiation cooling body materials for liquid rocket engines
Author(s):
WANG Kai1 ZHANG Peng1 YANG Weipeng1 ZHANG Weiming1 LI Guangkuo2
(1.Xian Space Engine Company Limited, Xian 710100, China 2.Academy of Aerospace Propulsion Technology, Xian 710100, China)
Keywords:
radiant cooling body combustion chamber nozzle refractory metal composite material
PACS:
TG14 V45
DOI:
-
Abstract:
Radiation cooling is the most commonly used cooling method for the upper stage and space liquid rocket engine thrust chamber body, it has also been applied in several high thrust and high-performance second stage rocket engine nozzle recently.The high temperature resistance and density of radiation cooling body materials directly affect the specific impulse, thrust weight ratio and reliability of liquid rocket engine.By searching domestic and overseas literatures, researches and applications of titanium alloy, superalloy, refractory metal and C fiber composite in radiant cooling body of liquid rocket engines were reviewed.Combined with the working conditions of combustion chamber and nozzle of liquid rocket engines, the characteristics of different materials were analyzed.To study the development needs of high performance, high reliability and low cost liquid rocket engines in the future, an overview of the Ir/Re/C-C composites materials, low density niobium alloy and 3D printing refractory alloy that have gradually developed in recent years was carried out.

References:

[1] 张其阳.液体火箭发动机推力室结构与冷却设计[D].北京:清华大学,2012.
[2] 赵海龙,张成印,曹红娟,等.30 kN上面级液氧甲烷发动机方案[J].火箭推进,2021,47(1):13-20.
ZHAO H L,ZHANG C Y,CAO H J,et al.System scheme of a 30 kN upstage LOX/methane engine[J].Journal of Rocket Propulsion,2021,47(1):13-20.
[3] 郭平,王慧珠.空间小推力发动机推力室喷注器的设计与身部冷却问题[J].上海航天,1996,13(3):46-50.
[4] 金韶山.液体火箭发动机推力室及钝体头锥发汗冷却研究[D].北京:清华大学,2008.
[5] VALENTINE P G,GRALD P R. Extreme temperature carbon and ceramic matrix composite nozzle extensions for liquid rocket engines[C]//International Astronautical Congress.[s.l.]:[s.n.],2019.
[6] DING R J.Thermal stir welding development at marshall space flight center[EB/OL].https://ntrs.nasa.gov/citations/20090007710.
[7] 谭永华,杜飞平,陈建华,等.液氧煤油高压补燃循环发动机深度变推力系统方案研究[J].推进技术,2018,39(6):1201-1209.
[8] 王娜,李海庆,徐方涛,等.双组元液体火箭发动机推力室材料研究进展[J].宇航材料工艺,2019,49(3):1-8.
[9] SCHMIDT-WIMMER S,BEYER S,WIGGER F,et al.Evaluation of ultra high temperature ceramics and coating-systems for their application in orbital and air-breathing propulsion[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference.Reston,Virginia:AIAA,2012.
[10] DAI J J.High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides:A review[J].Journal of Alloys and Compounds,2016,685:784-798.
[11] 许晓勇,赵世红,王召.轻质钛合金喷管在氢氧发动机上的应用研究[J].火箭推进,2016,42(4):1-6.
XU X Y,ZHAO S H,WANG Z.Application of lightweight titanium alloy nozzle in LOX-LH2 rocket engine[J].Journal of Rocket Propulsion,2016,42(4):1-6.
[12] BOYCE C.Aerojet-AJ10-137 Apollo service module engine[R].NASA SP 2009-4545.
[13] 韩鸿硕.火箭喷管铌合金及其涂层[J].材料工艺,1978,8(5):1-55.
[14] DU J,ZHAO C,CHEN G,et al.Recent progress of manufacturing technologies on C&W superalloys in China[C]//8th International Symposium on Superalloy 718 and Derivatives.Pennsylvania:TMS,2014.
[15] 杜金辉,赵光普,邓群,等.中国变形高温合金研制进展[J].航空材料学报,2016,36(3):27-39.
[16] PFEIFER G R.Aerojet-attitude control engines[R].NASA SP 2009-4545.
[17] THORAT S.Effect of metallurgical parameters induced by manufacturing processes on photochemical machining of Co-Cr L605 alloy[J].Procedia CIRP,2020,95:149-154.
[18] CHABOCHE J L.Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging[J].International Journal of Plasticity,2013,46:1-22.
[19] 蔡圳阳,沈鸿泰,刘赛男,等.难熔金属合金及其高温抗氧化涂层研究现状与展望[J].中国有色金属学报,2020,30(9):1991-2010.
[20] 俞肇铭.“阿波罗”姿控发动机系统[J].现代防御技术,1979,7(4):1-36.
[21] ELVERUM G W.TRW-Lunar descent engine[R].NASA SP 2009-4545.
[22] 潘兆义,蔡刚,宋国新.铌铪合金推力室身部表面高温防护涂层的工艺技术研究[J].火箭推进,2016,42(4):68-73.
PAN Z Y,CAI G,SONG G X.Research on thermal protection coatings on body surface of Nb-Hf alloy thrust chamber[J].Journal of Rocket Propulsion,2016,42(4):68-73.
[23] CHAZEN M,SANSCRAINTE W.Space shuttle bipropellant RCS engine[C]//9th Propulsion Conference.Reston,Virginia:AIAA,1973.
[24] 韩鸿硕.航天飞机推进系统的材料和工艺[J].材料工艺,1976,6(4):1-45.
[25] QIAN C H,et al.Microstructure and hardness of W-25Re alloy processed by high-pressure torsion[J].Transactions of Nonferrous Metals Society of China,2017,27(12):2622-2629.
[26] 张绪虎,徐方涛,石刚,等.铼铱材料在高性能发动机上的应用[J].宇航材料工艺,2016,46(1):37-41.
[27] 李夏明.姿轨控发动机推力室Re身部与喷注器连接技术研究[D].长沙:国防科学技术大学,2016.
[28] 刘犇,刘昌国,杨成虎,等.星用第三代铼/铱材料490 N发动机研制进展[J].上海航天,2019,36(6):69-75.
[29] SCHWENDE M,SCHULTE G,DARGIES E,et al.New generation of low thrust bi-propellant engines in qualification process[C]//29th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,1993.
[30] GOTZIG U,SCHULTE G,SOWA A.New generation 10 N bipropellant MMH/NTO thruster with double seat valve[C]//35th Joint Propulsion Conference andExhibit.Reston,Virginia:AIAA,1999.
[31] 王晓丽,谢恒,王坤杰,等.炭/陶喷管延伸段长时间抗氧化能力研究[J].炭素技术,2019,38(1):52-55.
[32] 田晓羽.C/SiC及C/C复合材料与Nb的反应钎焊工艺及机理研究[D].哈尔滨:哈尔滨工业大学,2018.
[33] LACHAUD J.Analytical modeling of the transient ablation of a 3D C/C composite[J].International Journal of Heat and Mass Transfer,2017,115:1150-1165.
[34] 刘彦杰,马武军,王松.陶瓷基复合材料火箭发动机推力室研究进展[J].宇航材料工艺,2007,37(4):1-4.
[35] SCHMIDT S.Advanced ceramic matrix composite materials for current and future propulsion technology applications[J].Acta Astronautica,2004,55(3/4/5/6/7/8/9):409-420.
[36] 葛明龙,田昌义,孙纪国.碳纤维增强复合材料在国外液体火箭发动机上的应用[J].导弹与航天运载技术,2003(4):22-26.
[37] 刘昌国,邱金莲,陈明亮.液体火箭发动机复合材料喷管延伸段研究进展[J].火箭推进,2019,45(4):1-8.
LIU C G,QIU J L,CHEN M L.Research progress of composites nozzle extension for liquid rocket engine[J].Journal of Rocket Propulsion,2019,45(4):1-8.
[38] BERDOYES M.Snecma propulsion solide advanced technology SRM nozzles,history and future[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston,Virginia:AIAA,2006.
[39] ELLIS R,LEE J,PAYNE F,et al.Development of a carbon-carbon translating nozzle extension for the RL10B-2 liquid rocket engine[C]//33rd Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,1997.
[40] SOKOLOVSKY M I,PETUKHOV S N,SEMYONOV Y P,et al.Development of carbon-carbon nozzle extension for liquid fuel rocket motors[J].Thermophysics and Aeromechanics,2008,15(4):671-677.
[41] 陆有军,王燕民,吴澜尔.碳/碳化硅陶瓷基复合材料的研究及应用进展[J].材料导报,2010,24(21):14-19.
[42] 葛明和,姚世强,安鹏.200 N Cf/SiC复合材料推力器研制[J].火箭推进,2016,42(3):15-20.
GE M H,YAO S Q,AN P.Development of 200 N thruster made from Cf/SiC composite[J].Journal of Rocket Propulsion,2016,42(3):15-20.
[43] 陈明亮,刘昌国,徐辉,等.远征三号上面级轨控发动机研制及在轨验证[J].火箭推进,2020,46(3):11-18.
CHEN M L,LIU C G,XU H,et al.Development and in-orbit verification of orbit-control engine in YZ-3 upper stage[J].Journal of Rocket Propulsion,2020,46(3):11-18.
[44] 王江帆.铱/铼/碳—碳推力室身部关键制备技术研究[D].长沙:国防科学技术大学,2013.
[45] SCHNEIDER S J.High temperature thruster technology for spacecraft propulsion[J].Acta Astronautica,1992,28:115-125.
[46] 郑欣,白润,蔡晓梅,等.新型铌合金研究进展[J].中国材料进展,2014,33(S1):586-594.
[47] WANG F,ZHEN X,BAI R,et al.Welding performance of low-density Nb-base alloy with Nb521 by electron beam[J].Rare Metal Materials and Engineering,2013,42(8):479-482.
[48] 蔡小梅,郑欣,白润,等.锻造工艺对低密度高强铌合金微观组织和性能的影响[J].热加工工艺,2021,50(19):87-89.
[49] 张德尧,肖联贞.C-103铌合金推力室模锻工艺研究[J].稀有金属材料与工程,1986,15(1):10-13.
[50] 雒亚涛,翟宝力.薄壁大尺寸铌钨合金喷管精密旋压成形工艺研究[J].火箭推进,2016,42(6):68-73.
LUO Y T,ZHAI B L.Research on precision spinning-pressure forming process of large-size thin-walled nozzle made of niobium tungsten alloy[J].Journal of Rocket Propulsion,2016,42(6):68-73.
[51] 丁红瑜,尹衍军,关杰仁,等.难熔金属增材制造研究进展[J].稀有金属材料与工程,2021,50(6):2237-2243.

Memo

Memo:
-
Last Update: 1900-01-01