|Table of Contents|

Transient characteristic analysis of low-pressure ignition for normal-temperature propellant generator (PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年02期
Page:
35-41
Research Field:
目次
Publishing date:

Info

Title:
Transient characteristic analysis of low-pressure ignition for normal-temperature propellant generator
Author(s):
WANG Dan LIU Zhenli ZHOU Kang CEHN Hongyu LIU Zhanyi LI Shuxin
(Xi'an Aerospace Propulsion Institute, Xi'an 710100, China)
Keywords:
low-pressure ignition of generator transient characteristic analysis correction coefficient of propellant conversion rate system dynamic simulation critical mixing ratio
PACS:
V434
DOI:
-
Abstract:
To solve the problem that the low-pressure ignition chamber pressure builds up slowly in the oxygen-enriched generator with normal-temperature propellant, a modified method based on the correction coefficient of propellant conversion rate is proposed.This method combines the parabola function and the hyperbolic tangent function to form a new correction coefficient function, and it takes the time when the mixing ratio of generator decreases to the critical mixing ratio as the switching point of the correction coefficient function.The results, verified by the low pressure ignition test with different ignition sequences, show that the maximum dynamic error of the generator chamber pressure between the simulated results and the test value is 4.6.Using the mixing ratio of 36 as the critical mixing ratio, the time point of normal combustion of propellant can be accurately captured in a wide range.If the oxidant in the oxygen-enriched generator accumulates too much in advance, a sharp chemical reaction will take place in the generator after fuel enters and it will lead to a peak overshoot in the chamber pressure.For the design of time sequence, the time lag between the fuel and the oxidizer should be shortened as far as possible on the premise of ensuring the oxygen-enriched ignition.

References:

[1] 张凯宏,江欣,肖明杰,等.基于流固耦合理论的关机水击特性[J].火箭推进,2019,45(2):36-43.
ZHANG K H,JIANG X,XIAO M J,et al.Characteristics of water hammer in shutting based on FSI[J].Journal of Rocket Propulsion,2019,45(2):36-43.
[2] 汪洪波,吴海燕,谭建国.推进系统动力学[M].北京:科学出版社,2018.
[3] 陈宏玉,刘红军,陈建华.补燃循环发动机强迫起动过程[J].航空动力学报,2015,30(12):3010-3016.
[4] 张育林,刘昆,程谋森.液体火箭发动机动力学理论与应用[M].北京:科学出版社,2005.
[5] 任孝文,陈宏玉,李平,等.弱可压缩流体与可压缩流体模型的管路水击研究[J].推进技术,2020,41(8):1880-1886.
[6] 刘昆,张育林,程谋森.液体火箭发动机系统瞬变过程模块化建模与仿真[J].推进技术,2003,24(5):401-405.
[7] 汪小卫,金平,俞南嘉,等.富氧预燃室试验启动过程研究[J].航空动力学报,2007,22(12):2119-2123.
[8] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005.
[9] 格列克曼.液体火箭发动机自动调节[M].顾明初,郁明桂,邱明煜,译.北京:宇航出版社,1995.
[10] 契万诺夫,比利亚耶夫,切尔瓦科夫.液体火箭发动机工作过程的数学模拟[M].张兴波,李平,陈建华,等译.西安:航天科技集团公司第十一研究所,2000.
[11] 赵建军,丁建完,周凡利,等.Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报,2006,18(S2):570-573.
[12] 吴民峰.多领域建模仿真平台中语义分析关键机制研究与实现[D].武汉:华中科技大学,2006.
[13] 李国欣.多领域物理系统建模平台中若干关键技术研究与实现[D].武汉:华中科技大学,2007.
[14] ELMQVIST H.A structured model language for large continuous systems[D].Lund, Sweden: Lund University,1978.
[15] MATTSSON S E,ELMQVIST H,OTTER M.Physical system modeling with Modelica[J].Control Engineering Practice,1998,6(4):501-510.
[16] JAKOBSEN A.Energy optimisation of refrigeration systems[D].Copenhagen:Technical University of Denmark,1995.
[17] FOWLER A C.Mathematical models in the applied sciences[J].Biometrics,1998,54(4):1684.
[18] 陈立平,周凡利,丁建完.多领域物理统一建模语言MODELICA与MWORKS系统建模[M].武汉:华中科技大学出版社,2019.
[19] 陈宏玉,刘红军,陈建华.液氧煤油发动机瞬态特性模块化通用仿真研究[C]//航空宇航科学与技术全国博士生学术论坛论文集.长沙:[s.n.],2013.
[20] 陈宏玉.液氧煤油发动机瞬变过程分布参数建模与仿真研究[D].西安:西安航天动力研究所,2013.

Memo

Memo:
-
Last Update: 1900-01-01