|Table of Contents|

Thermal protection methods of multilayer heat insulation material (PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年02期
Page:
51-56
Research Field:
目次
Publishing date:

Info

Title:
Thermal protection methods of multilayer heat insulation material
Author(s):
ZHANG Zhongli ZHOU Lixin HU Jinhua
(Xi'an Aerospace Propulsion Institute, Xian 710100, China)
Keywords:
launcher liquid rocket engine thermal protection heat insulation material
PACS:
V231.3
DOI:
-
Abstract:
Based on the boundary conditions that the separated heat flux of the 1st and 2nd stages of the launch vehicle is about 9.6 MW/m2 and the running time is 0.5 s, and the nozzle radiation heat flux of the 2nd stage engine is 25-100 kW/m2 and lasting time is about 120 s.Two thermal insulation schemes were selected, which were composed of 2.0 mm thick zirconia ceramic plate, 5.0/8.0 mm thick aluminum silicate fiber felt and 3.2/1.6 mm thick flame retardant silicone rubber.One-dimensional unsteady state method was used to simulate and analyze the wall temperature of the components in the engine under the protection of two thermal insulation schemes.According to the wall temperature and material mass, the thermal protection scheme of high temperature resistant multilayer thermal insulation materials is put forward.Using LPG spray gun to inject super-alloy plate to simulate the combustion chamber wall, the wall temperature of simulation test shows that the thermal insulation scheme can meet the requirements of thermal protection.

References:

[1] 范瑞祥,徐珊姝,宫宇昆,等.基于CFD/DSMC羽流仿真的新型运载火箭二级尾舱整体防热方案研究[J].载人航天,2018,24(4):500-504.
[2] 周志坛,丁逸夫,乐贵高,等.高空飞行环境中液体运载火箭底部热环境研究[J].宇航学报,2019,40(5):577-584.
[3] 张灿,林旭斌,刘都群,等.2019年国外高超声速飞行器技术发展综述[J].飞航导弹,2020(1):16-20.
[4] 王鹏飞,王光明,蒋坤,等.临近空间高超声速飞行器发展及关键技术研究[J].飞航导弹,2019(8):22-28.
[5] 刘欣,王国庆,李曙光,等.重型运载火箭关键制造技术发展展望[J].航天制造技术,2013(1):1-6.
[6] 林奔,黄超,马云龙,等.重型运载火箭结构材料选材方案研究与启示[J].轻合金加工技术,2020,48(6):14-18.
[7] 张忠利.姿控发动机热防护研究[J].火箭推进,2008,34(3):17-22.
ZHANG Z L.Investigation on thermal protection for attitude correction liquid rocket engine[J].Journal of Rocket Propulsion,2008,34(3):17-22.
[8] 王亚军,刘树仁,吴义田,等.运载火箭柔性防热材料隔热性能的试验研究[J].航天器环境工程,2019,36(1):56-60.
[9] 冯韶伟,马忠辉,吴义田,等.国外运载火箭可重复使用关键技术综述[J].导弹与航天运载技术,2014(5):82-86.
[10] 任芬,唐锦荣,吴光宗,等.SCAT弹头热防护的简化计算方法[J].宇航学报,1996,17(4):14-19.
[11] 华增功.固体发动机有机烧蚀防热涂层的研究[J].推进技术,1992,13(3):47-52.
[12] 魏超,张忠利.深空探测发动机热防护研究[J].航空动力学报,2010,25(5):1139-1144.
[13] 姚从菊.再入飞行器烧蚀层内热质传输过程的数值模拟[D].哈尔滨:哈尔滨工业大学,2007.
[14] 姬梅梅,朱时珍,马壮.航空航天用金属表面热防护涂层的研究进展[J].表面技术,2021,50(1):253-266.
[15] 朱剑琴,赵超凡,邱璐,等.热障涂层在涡轮叶片应用中的热防护有效性[J].航空动力学报,2019,34(11):2503-2508.
[16] 姜贵庆,马淑雅.防热涂层材料热防护性能预测[J].空气动力学学报,2004,22(1):24-28.
[17] 李崇俊.X-43A高超音速飞行器C/C热防护涂层结构分析[J].高科技纤维与应用,2015,40(4):26-30.
[18] 易桦,黄金印.星外管路多层隔热组件热参数确定方法[J].航天器工程,2013,22(3):53-57.
[19] 侯增祺,胡金刚.航天器热控制技术:原理及其应用[M].北京:中国科学技术出版社,2007.
[20] GILMORE D G.Spacecraft thermal control handbook[M].2nd ed.EI Segundo:The Aerospace Corporation Press,2002.
[21] 何知朱.新型热控材料器件及应用[M].北京:宇航出版社,1988.

Memo

Memo:
-
Last Update: 1900-01-01