|Table of Contents|

Numerical simulation on combustion organization scheme of scramjet at high Mach number(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年05期
Page:
1-12
Research Field:
目次
Publishing date:

Info

Title:
Numerical simulation on combustion organization scheme of scramjet at high Mach number
Author(s):
LI Jiahang1 SHI Baolu12 ZHAO Majie12 WANG Ningfei1
(1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China; 2.Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China)
Keywords:
high Mach number scramjet combustion organization total pressure loss internal flow resistance
PACS:
V231.2
DOI:
-
Abstract:
Aiming at the optimization problem of combustion organization scheme for the scramjet engine under high Mach number conditions(Ma=8, where the Mach number in the combustor is 3.88), a numerical simulation method with three-dimensional steady compressible RANS was used to study the combustion scheme with different injection angles and cavity angles. The results indicat that the combustion at high Mach numbers occurs mainly in the cavity and near-wall area of the combustor, and the combustion reaction becomes more intense with the increase of injection angle. Greater injection angles and smaller cavity angles not only lead to higher mixing efficiency and more efficient combustion, but also increase the total pressure loss due to combustion. Under high Mach number conditions, the engine flow resistance is high, which is 7-8 times of the total thrust, and increasing the injection angle and reducing the cavity angle are beneficial for improving the engine performance. Among them, the positive thrust achieved by using a 135° reverse fuel injection is the highest, and the combustion position is relatively forward, which is conducive to the miniaturization of combustor design size.

References:

[1] 杨佳宁,沈赤兵,杜兆波.激波干扰支板射流混合增强规律[J].火箭推进,2023,49(3):34-47.
YANG J N,SHEN C B,DU Z B.Mixing enhancement law of shock wave interfering struct jet[J].Journal of Rocket Propulsion,2023,49(3):34-47.
[2] 张时空,李江,黄志伟,等.高马赫数来流超燃冲压发动机燃烧流场分析[J].宇航学报,2017,38(1):80-88.
[3] TANG T,WANG Z G,HUANG Y H,et al.Correction:Investigation of combustion structure and flame stabilization in an axisymmetric scramjet[J].AIAA Journal,2023,61(6):2.
[4] 岳连捷,张旭,张启帆,等.高马赫数超燃冲压发动机技术研究进展[J].力学学报,2022,54(2):263-288.
[5] HACK F,MECKLEM S,LANDSBERG W,et al.Dividing and conquering:Supersonic combustion of ethylene with varied tandem cavities[C]//Brisbane:The University of Queensland,2020.
[6] MOURA A F,GIBBONS N,WHEATLEY V,et al.Effects of oxygen enrichment on supersonic combustion in a Mach 10 scramjet[J].AIAA Journal,2021,59(11):4556-4568.
[7] ROGERS R,SHIH A,HASS N.Scramjet development tests supporting the Mach 10 flight of the X-43[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference.Reston,Virginia:AIAA,2005.
[8] JACKSON K R,GRUBER M R,BUCCELLATO S.Mach 6-8+ hydrocarbon-fueled scramjet flight experiment:The HIFiRE flight 2 project[J].Journal of Propulsion and Power,2014,31(1):36-53.
[9] STEELANT J,VARVILL R,WALTON C,et al.Achievements obtained for sustained hypersonic flight within the LAPCAT-II project[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.Reston,Virginia:AIAA,2015.
[10] 张蒙正,李斌,李光熙.组合动力:现状、问题与对策[J].火箭推进,2021,47(6):1-10.
ZHANG M Z,LI B,LI G X.Combined cycle propulsion:Current status,problems and solutions[J].Journal of Rocket Propulsion,2021,47(6):1-10.
[11] 吴里银,孔小平,李贤,等.马赫数10超燃冲压发动机激波风洞实验研究[J].推进技术,2021,42(12):2818-2825.
[12] 张冬青,邓维鑫,邢建文,等.Ma10条件超燃冲压发动机自由射流试验过程[J].航空动力学报,2023,38(3):735-742.
[13] 何粲,邢建文,欧阳浩,等.飞行Ma12条件超燃发动机流场及燃烧特征分析[J].力学学报,2022,54(3):622-632.
[14] 卢洪波,陈星,曾宪政,等.FD-21风洞Ma=10高超声速推进试验技术探索[J].气体物理,2022,7(2):1-12.
[15] 姚轩宇,王春,喻江,等.JF12激波风洞高Mach数超燃冲压发动机实验研究[J].气体物理,2019,4(5):25-31.
[16] 张启帆,岳连捷,贾轶楠,等.真实气体效应对Ma10级进气道流动的影响[J].推进技术,2019,40(5):1042-1050.
[17] 张锦成,王振国,孙明波,等.高马赫数下超声速燃烧的自点火查表方法[J].力学学报,2022,54(6):1548-1556.
[18] FALEMPIN F,SERRE L.LEA flight test program:First step to an operational application of high-speed airbreathing propulsion[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies.Reston,Virginia:AIAA,2003.
[19] 李资聪.压缩—加热一体化的高马赫数超燃冲压发动机性能研究[D].武汉:华中科技大学,2021.
[20] LANDSBERG W O,VANYAI T,MCINTYRE T J,et al.Experimental scramjet combustion modes of hydrocarbon mixtures at Mach 8 flight conditions[J].AIAA Journal,2020,58(12):5117-5122.
[21] 朱美军,辜天来,张帅,等.三维超声速燃烧室凹腔构型的优化设计及参数分析[J].推进技术,2018,39(8):1780-1789.
[22] ZETTERVALL N,FUREBY C,NILSSON E J K.Small skeletal kinetic reaction mechanism for ethylene-air combustion[J].Energy & Fuels,2017,31(12):14138-14149.
[23] GRUBER M R,NEJAD A S,CHEN T H,et al.Transverse injection from circular and elliptic nozzles into a supersonic crossflow[J].Journal of Propulsion and Power,2000,16(3):449-457.
[24] 贾真.超声速燃烧室中壁面凹腔结构的稳焰机理[J].航空动力学报,2013,28(6):1392-1401.
[25] 邓诗雨,金志光,柯玉祥.宽域组合发动机低速段冲压通道阻力特性[J].火箭推进,2022,48(6):44-51.
DENG S Y,JIN Z G,KE Y X.Drag characteristics of ramjet chanel of combined cycle engine at low speeds[J].Journal of Rocket Propulsion,2022,48(6):44-51.

Memo

Memo:
-
Last Update: 1900-01-01