|Table of Contents|

Effect of radial slots layout on spray angle for gas-liquid pintle injector(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年06期
Page:
1-9
Research Field:
目次
Publishing date:

Info

Title:
Effect of radial slots layout on spray angle for gas-liquid pintle injector
Author(s):
ZHANG Botao1 WANG Kai1 LI Ping2 YANG Anlong1
1. Key Laboratory for Liquid Rocket Engine Technology, Xi'an Aerospace Propulsion Institute,Xi'an 710100, China; 2.Academy of Aerospace Propulsion Technology, Xi'an 710100, China
Keywords:
gas-liquid pintle injector spray angle radial slot blocking rate
PACS:
V434.3
DOI:
-
Abstract:
In present, the injection form of the center propellant in pintle injector is mostly discrete slot, and radial slots layout plays a decisive role in the spray structure. In order to obtain the spray angle formula of gas-liquid pintle injectors, a spray angle prediction formula of injector unit was deduced from the momentum conservation based on the control volume. The momentum coefficient was derived from the experimental results to modify the theoretical formula. For the spray angle of pintle multi-injectors, the experimental results were used to modify the theoretical model of injector unit spray angle and the effect of radial slots layout and blocking rate on spray angle was mastered. The results show that the theoretical value of spray angle is in good agreement with the experimental value. Under the constant total injection area and mass flow rate, the radial slots layout has little effect on the spray angle. The spray angle is determined by the local momentum ratio and blocking rate. Whenblocking rate is not more than14.55, the interaction between adjacent injection units is minimal, and the spray angle of gas-liquid pintle multi-injectors is approximate to the spray angle of gas-liquid pintle injector unit. Whenblocking rate is not less than25.46, the recommended value of momentum coefficient in the theoretical formula of spray angle is 0.87.

References:

[1] DRESSLER G,BAUER J.TRW pintle engine heritage and performance characteristics[EB/OL].https://www.semanticscholar.org/paper/TRW-Pintle-Engine-Heritage-and-Perfo-
rmance-Dressler-Bauer/bd8e4a1c601e7213df57f61a6b717d
257f6e32cb,2000.
[2] NORRIS J,VERNON D.Apollo propulsion-system performance evaluation[C]//4th Propulsion Joint Specialist Conference.Reston,Virigina:AIAA,1968.
[3] ELVERUM G,HOFFMAN A,MILLER J,et al.The descent engine for the lunar module[C]//3rd Propulsion Joint Specialist Conference.Reston,Virigina:AIAA,1967.
[4] JASON M,GROMSKI A N,MAJAMAKI S G,et al. Northrop Grumman TR202 LOx/LH2 deep throttling engine technology project status[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,American Institute of Aeronautics and Astronautics.Reston,Virigina:AIAA,2010.
[5] CHIANESE S,GROMSKI J M,WEINSTOCK V D,et al.Northrop Grumman TR202 LOx/GH2 deep throttling pintle injector performance,stability,and heat transfer measurements[EB/OL].https://www.semanticscholar.org/paper/Northrop-Grumman-TR202-LOX-GH2-Deep-Throttling-and-Chianese-Gromski/ffe459b5947f161c02dcce844ddf1759d23
d243d,2010.
[6] MUELLER T,DRESSLER G.TRW 40 klbf LOx/RP-1 low cost pintle engine test results[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virigina:AIAA,2000.
[7] BJELDE B,CAPOZZOLI P,SHOTWELL G.The SpaceX Falcon 1:Launch Vehicle Flight 3 results,future developments and Falcon 9 evolution[C]//59th International Astronautical Congress.Glasgow:[s.n.],2008.
[8] CAPOZZOLI P,INSPRUCKER J,SHOTWELL G.The Falcon 9:A new EELV-class man-rated launch vehicle[C]//58th International Astronautical Congress.Hyderabad:[s.n.],2007.
[9] 刘昌波,林革,宋大亮,等.针栓式推力室冷却特性试验研究[J].火箭推进,2020,46(1):13-19.
LIU C B,LIN G,SONG D L,et al.Experimental study on cooling characteristics of pintle thruster[J].Journal of Rocket Propulsion,2020,46(1):13-19.
[10] 雷娟萍,兰晓辉,章荣军,等.嫦娥三号探测器7 500 N变推力发动机研制[J].中国科学:技术科学,2014,44(6):569-575.
[11] 张紫豪,吴继平,成鹏,等.结构参数对可调节针栓喷注器喷雾特性的影响[J].火箭推进,2022,48(5):9-17.
ZHANG Z H,WU J P,CHENG P,et al.Effects of structural parameters on the spray characteristics of variable pintle injectors[J].Journal of Rocket Propulsion,2022,48(5):9-17.
[12] CHENG P,LI Q L,XU S,et al.On the prediction of spray angle of liquid-liquid pintle injectors[J].Acta Astronautica,2017,138:145-151.
[13] 成鹏.变推力火箭发动机喷雾燃烧动态过程研究[D].长沙:国防科技大学,2018.
[14] 王凯,雷凡培,杨岸龙,等.针栓式喷注单元膜束撞击雾化混合过程数值模拟[J].航空学报,2020,41(9):123802.
[15] FREEBERG J,HOGGE J.Spray cone formation from pintle-type injector systems in liquid rocket engines[EB/OL].https://www.semanticscholar.org/paper/Spray-Cone-Formation-from-Pintle-Type-Injector-in-Freeberg-Hogge/7b3063fdd19557bec491cc8d3e8cef04e50aa0ee,2019.
[16] SON M,YU K,KOO J,et al.Effects of momentum ratio and Weber number on spray half angles of liquid controlled pintle injector[J].Journal of Thermal Science,2015,24(1):37-43.
[17] BOETTCHER P A,DAMAZO J S,SHEPHERD J E,et al.Visualization of tranverse annular jets[C]//62nd Annual Meeting of the APS Division of Fluid Dynamic,American Physical Society.Minneapolis,Minnesota:[s.n.],2009.
[18] 张波涛,李平,王凯,等.变推力液体火箭发动机中针栓喷注器研究综述[J].宇航学报,2020,41(12):1481-1489.
[19] 石璞,朱国强,李进贤,等.液体火箭发动机针栓喷注器雾化燃烧技术研究进展[J].火箭推进,2020,46(4):1-13.
SHI P,ZHU G Q,LI J X,et al.Advances in atomized combustion technology research of pintle injector for liquid rocket engines[J].Journal of Rocket Propulsion,2020,46(4):1-13.
[20] FANG X X,SHEN C B.Study on atomization and combustion characteristics of LOx/methane pintle injectors[J].Acta Astronautica,2017,136:369-379.

Memo

Memo:
-
Last Update: 1900-01-01