|Table of Contents|

Comparative experimental of spray characteristics for gas liquid coaxial swirl single and double injectors(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年06期
Page:
38-45
Research Field:
目次
Publishing date:

Info

Title:
Comparative experimental of spray characteristics for gas liquid coaxial swirl single and double injectors
Author(s):
KANG Jinxin TONG Yiheng GAO Yuchao XIE Jiahao GUO Kangkang FENG Songjiang
Space Engineering University, Beijing 101416, China
Keywords:
liquid-centered coaxial swirl injector SMD spray angle double injectors
PACS:
V19
DOI:
-
Abstract:
Presents an experimental study of the spray characteristics of liquid-centred coaxial swirl single and double injectors.High-speed photography was applied to capture the transient spray process and the corresponding atomization cone angles were obtained by a Matlab program and compared with a single injector. And a laser particle analyzer was used to measure the Sauter mean diameter(SMD)in the near-field region of the dual injectors, which was used to analyze the variation mechanism in the atomization cone angle between the single and dual injectors.The results shows that with the increase of vapor liquid ratio, the atomisation cone angle of the double injectors increases compared to the single injector.The complex turbulence zone formed between the double injectors results in the sauter mean diameter between the injectors being smaller than the outer side of the injector.The smaller particle size between the injectors is susceptible to the winding and sucking effect of the turbulence zone, resulting in an increase in the spray cone angle inside the double injectors.

References:

[1] 楚威,李修乾,仝毅恒,等.液体中心式同轴离心喷嘴液膜破碎特性仿真研究[J].推进技术,2021,42(7):1522-1533.
[2] 游云霞,侯力,易宗礼,等.气液同轴离心式喷嘴雾化性能及优化设计研究[J].机械工程学报,2022,58(1):201-211.
[3] 姜传金,任永杰,仝毅恒,等.液体火箭发动机离心式喷嘴振荡喷雾特性现状和发展趋势[J].国防科技大学学报,2023,45(3):1-19.
[4] 康忠涛.气液同轴离心式喷嘴非定常雾化机理和燃烧特性研究[D].长沙:国防科学技术大学,2016.
[5] 曹建明.液体喷雾学[M].北京:北京大学出版社,2013.
[6] HAUTMAN D J.Spray characterization of liquid/gas coaxial injectors with the center liquid swirled[J].Atomization and Sprays,1993,3(4):373-387.
[7] GUILDENBECHER D R,RACHEDI R R,SOJKA P E.Pressure-scaling of pressure-swirl atomizer cone angles[J].Journal of Engineering for Gas Turbines and Power,2008,130(6):1.
[8] WHITLOW J D,LEFEBVRE A H.Effervescent atomizer operation and spray characteristics[J].Atomization and Sprays,1993,3(2):137-155.
[9] WEI X A,YONG H A.Improved semiempirical correlation to predict sauter mean diameter for pressure-swirl atomizers[J].Journal of Propulsion and Power,2014,30(6):1628-1635.
[10] 徐文,高新妮,胡保林,等.离心式喷嘴一次破碎与二次雾化的数值模拟[J].火箭推进,2022,48(4):13-20.
XU W,GAO X N,HU B L,et al.Numerical simulation of primary breakup and secondary atomization for centrifugal nozzle[J].Journal of Rocket Propulsion,2022,48(4):13-20.
[11] IM J H,CHO S,YOON Y,et al.Comparative study of spray characteristics of gas-centered and liquid-centered swirl coaxial injectors[J].Journal of Propulsion and Power,2010,26(6):1196-1204.
[12] 陈晨,晏至辉,唐志共,等.气液同轴离心式喷嘴雾化特性试验研究[J].江苏科技大学学报(自然科学版),2020,34(6):50-55.
[13] HARDALUPAS Y,WHITELAW J H.Interaction between sprays from multiple coaxial airblast atomizers[J].Journal of Fluids Engineering,1996,118(4):762-771.
[14] SONG W,KOO J.Spray patterns of multi-element swirl coaxial injector of interacting spray under different injection conditions[J].AIP Advances,2021,11(7):75030.
[15] 陈曦,葛少成,张忠温,等.基于Fluent多喷嘴喷雾干涉数值模拟分析[J].环境工程学报,2014,8(6):2503-2508.
[16] 王凯,李鹏飞,杨国华,等.相邻离心式喷嘴液膜撞击雾化过程仿真[J].推进技术,2017,38(2):408-415.
[17] 侯燕,陶毓伽,淮秀兰.多喷嘴喷雾场数值模拟分析[J].工程热物理学报,2012,33(8):1362-1366.
[18] GABOW H.Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms[M].Philadelphia,PA:Society for Industrial and Applied Mathematics,2007.
[19] ARTHUR D,VASSILVITSKII S.K-means++:The advantages of careful seeding[C]//18th Annual ACM-SIAM Symposium on Discrete Algorithms.New Orleans,Louisiana:[s.n.],2007.
[20] 姜传金.气体中心式同轴离心喷嘴非定常雾化特性研究[D].北京:航天工程大学,2021.
[21] 白晓.气液同轴离心式喷嘴自激振荡过程及对喷雾燃烧特性的影响研究[D].长沙:国防科技大学,2020.

Memo

Memo:
-
Last Update: 1900-01-01