|Table of Contents|

Application and prospect of in-situ nondestructive testing of reusable liquid rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年01期
Page:
46-56
Research Field:
目次
Publishing date:

Info

Title:
Application and prospect of in-situ nondestructive testing of reusable liquid rocket engine
Author(s):
WU Xiaoxin1 JIA Jieyu2 XING Lixiang2 ZHU Andong2 SONG Cheng2
1.Northwestern Polytechnical University, Xi'an 710072, China; 2.Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
reusable liquid rocket engine in-situ NDT intelligence automation
PACS:
V43
DOI:
10.3969/j.issn.1672-9374.2024.01.004
Abstract:
Reusable space launch vehicle is the cutting-edge of national strategic science and technology, and the development of reusable liquid rocket engines has become an urgent demand under this trend. After the rocket returns, the engine is a key inspection and maintenance object for the entire rocket. By using non-destructive testing technology to obtain structural health status information in the original state of the engine, which is crucial to quickly determine whether the product life meets the requirements for reuse and improve the reliability of liquid rocket engine reuse. The current non-destructive testing technologies applied in the aerospace field were reviewed, and their applicability in liquid rocket engines was evaluated and analyzed. Based on the characteristics of liquid rocket engines and the application scenarios of reusable non-destructive testing, there is an urgent need for research on technologies such as ultrasonic testing, digital image measurement, plume spectroscopy, and fast response dynamic sensors. At the same time, automated and intelligent specialized testing equipment should be developed to form a rapid use, maintenance, processing, and testing system, achieving portable, efficient, defect visualization, and quantification testing capabilities for liquid rocket engines.

References:

[1] SMITH R A, HUGO G. Transient eddy-current NDE for ageing aircraft-capabilities and limitations[J]. Insight, 2001, 43: 14-20.
[2]MOHAMMADKHANI R, FRAGONARA L Z, JANARDHAN P M, et al. Improving depth resolution of ultrasonic phased array imaging to inspect aerospace composite structures[J]. Sensors, 2020, 20(2): 559.
[3]SUMANA, KUMAR A. Total focusing method based ultrasonic phased array imaging in thick structures[EB/OL].[2022-11-15].https://www.semanticscholar.org/paper/TOTAL-FOCUSING-METHOD-BASED-ULTRASONIC-PH
ASED-ARRAY-Sumana-Kumar/a8ba3c08d06318557d8d5
c2f4edd0841dc7002a9.
[4]田武刚. 航空发动机关键构件内窥涡流集成化原位无损检测技术研究[D]. 长沙: 国防科学技术大学, 2009.
TIAN W G. Research on technology of borescope and eddy current integrative in-situ nondestructive testing for key components of aeroengine[D].Changsha: National University of Defense Technology, 2009.
[5]总装备部.航空发动机外场原位无损检测要求: GJB 7519-2012[S].北京: 总装备部军标出版发行部,2012.
National Military Standard General Equipment Department. Requirements for field in-situ non-destructive testing of aero-engines: GJB 7519-2012[S].Beijing: General Equipment Military Standard publishing and Distribution Department,2012.
[6]SOHN H, FARRAR C R. Damage diagnosis using time series analysis of vibration signals[J]. Smart Material Structures, 2001, 10(3): 446-451.
[7]赵灿, 王建超, 张健, 等. 发生器头部电子束焊缝熔深相控阵超声检测[J]. 火箭推进, 2022, 48(5): 84-92.
ZHAO C, WANG J C, ZHANG J, et al. Phased array ultrasonic testing of electron beam weld penetration at generator head[J]. Journal of Rocket Propulsion, 2022, 48(5): 84-92.
[8]韩建宁, 张振宇, 王珏. 铆钉超声相控阵检测及应用[J]. 无损探伤, 2021, 45(1): 41-43.
HAN J N, ZHANG Z Y, WANG J. Ultrasonic phased array detection and application of rivets[J]. Nondestructive Testing Technologying Technology, 2021, 45(1): 41-43.
[9]杨琛, 李光植,马延斌. 相控阵全聚焦实时3D超声成像检测高强度螺栓[J].制造与工艺, 2022(19): 136-138.
YANG C, LI G Z, MA Y B.Total focusing phased array real time 3D ultrasonic imaging for high strength bolts[J].Manufacturing and Process, 2022(19): 136-138.
[10]CHU W P. Investigation of laser holographic lnterferometric techniques for structure inspection[Z]. 1973.
[11]李辉, 张丽, 张洋洋, 等. 激光超声检测技术在异种钢对接焊缝检测中应用[J]. 电力安全技术, 2023,25(3): 62-64.
LI H, ZHANG L, ZHANG Y Y, et al. Application of laser ultrasonic testing technology in dissimilar steel butt weld inspection[J]. Electric Safety Technology, 2023, 25(3): 62-64.
[12]赵灿, 王建超, 王永红, 等. 转子组件电子束焊缝熔深超声检测[J]. 无损探伤, 2022, 46(2): 45-48.
ZHAO C, WANG J C, WANG Y H, et al. Ultrasonic inspection of electron beam weld penetration of rotor components[J]. Nondestructive Testing Technologying Technology, 2022, 46(2): 45-48.
[13]HUGHES R R, STEVE D. Eddy-current rack detection at frequencies approaching electrical resonance[J]. AIP Conference Proceedings, 2014, 1581:1366-1373.
[14]DMITRIEV S F, KATASONOV A O, MALIKOV V N,et al. Eddy-current measuring system for analysis of alloy defects and weld seams[J]. Russian Engineering Research, 2016, 36(8): 626-629.
[15]国家国防科技工业局.航空发动机叶片涡流检测:HB 20114-2012[S]. 北京: 中国航空综合技术研究所,2012.
SASTIND.Methods for eddy current test of aero-engine blades:HB 20114-2012[S].Beijing: China Aeronautical Comptrehensive Technology Research Institute,2012.
[16]赵秀梅, 段建刚, 李永. 涡流阵列探头在高压涡轮叶片原位检测中的应用[J]. 无损检测, 2014, 36(4): 20-22.
ZHAO X M, DUAN J G, LI Y. Application of eddy current array probe in the in-situ detection of high pressure turbine blade[J]. Nondestructive Testing Technologying, 2014, 36(4): 20-22.
[17]喻星星,付跃文,张朝晖. 发动机篦齿盘脉冲涡流检测技术研究[C]//航空装备维修技术及应用研讨会论文集. 烟台:[s.n.],2015.
YU X X, FU Y W, ZHANG Z H. Research on pulse eddy current testing technology for engine grate disk[C]//Proceedings of Aviation Equipment Maintenance Technology and Application. Yantai:[s.n.], 2015.
[18]PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427-431.
[19]SUTTON M, WOLTERS W, PETERS W, et al. Determination of displacements using an improved digital correlation method[J]. Image and Vision Computing, 1983,1(3):133-139.
[20]BARONE S, NERI P, PAOLI A, et al. Low-frame-rate single camera system for 3D full-field high-frequency vibration measurements[J]. Mechanical Systems and Signal Processing, 2019, 123: 143-152.
[21]刘依. 基于数字图像相关的旋转物体位移和应变全场测量方法研究[D]. 南昌: 华东交通大学, 2021.
LIU Y. Research on full-field measurement method of displacement and strain of rotating object based on digital image correlation[D].Nanchang: East China Jiaotong University, 2021.
[22]张玉玲, 谢爱华, 杨云涛, 等. 数字图像应用于疲劳监测的测量参数研究[J]. 钢结构, 2022, 37(6): 18-27.
ZHANG Y L, XIE A H, YANG Y T, et al. Test research on measurement parameters of digital image applied to fatigue monitoring[J]. Steel Construction, 2022, 37(6): 18-27.
[23]余镇江. 基于数字图像相关法的航空发动机叶片三维变形测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
YU Z J. Research on 3D deformation measurement technology of aero-engine blades based on digital image correlation method[D].Harbin: Harbin Institute of Technology, 2021.
[24]伍鹏, 李高春, 韩永恒, 等. 基于SEM与数字图像相关的固体发动机黏接界面细观损伤过程分析[J]. 火炸药学报, 2021, 44(1): 106-112.
WU P, LI G C, HAN Y H, et al. Analysis of meso-damage process of solid rocket motor adhesive interface based on SEM and digital image correlation[J]. Chinese Journal of Explosives & Propellants, 2021, 44(1): 106-112.
[25]JANELIUKSTIS R, CHEN X. Review of digital image correlation application to large-scale composite structure testing[J]. Composite Structures, 2021, 271: 114143.
[26]GRADL P R. Digital image correlation techniques applied to large scale rocket engine testing[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2016.
[27]陆鹏. 光学无损检测中的载波技术及其在舰船油泵变形测量中的应用[J]. 舰船科学技术, 2006, 28(4): 79-81.
LU P. Carrier technology of optic NDT and its application in measurement of ship pump deformation[J]. Ship Science and Technology, 2006, 28(4): 79-81.
[28]MEHRUBEOGLU M, SIMIONESCU P A, ROBINSON S, et al. A comparative study of three vision systems for metal surface defect detection[EB/OL]. [2023-03-10]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9611/1/A-comparative-study-of-three-vision-systems-
for-metal-surface/10.1117/12.2190216.short#_=_,2015.
[29]TEJWANI G, BIRCHER F, VAN DYKE D, et al. SSME health monitoring at SSC with exhaust plume emission spectroscopy[C]//33rd Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1997.
[30]TEJWANI G, VAN DYKE D, BIRCHER F, et al. SSME exhaust plume emission spectroscopy at SSC-recent analytical developments and test results[C]//31st Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1995.
[31]赵永学, 张育林, 李麦亮, 等. 羽流UV-VIS辐射在液体火箭发动机故障诊断中的应用技术研究[J]. 宇航学报, 2002, 23(1): 34-39.
ZHAO Y X, ZHANG Y L, LI M L, et al. Study of the fault diagnosis technology for liquid propellant rocket enging by plume UV-VIS radiation[J]. Journal of Astronautics, 2002, 23(1): 34-39.
[32]徐启. 固体火箭发动机羽流凝聚相颗粒分析研究[D]. 北京: 北京理工大学, 2016.
XU Q. Research on particle analysis of condensed phase in solid rocket motor plume[D].Beijing: Beijing Institute of Technology, 2016.

Memo

Memo:
-
Last Update: 1900-01-01