|Table of Contents|

Analysis of thermo-mechanical fatigue life of regeneratively cooled thrust chamber based on phase field modeling(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年01期
Page:
78-86
Research Field:
目次
Publishing date:

Info

Title:
Analysis of thermo-mechanical fatigue life of regeneratively cooled thrust chamber based on phase field modeling
Author(s):
SUN Shen YI Min
State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and AstronauticsNUAA, Nanjing 210016, China
Keywords:
regeneratively cooled thrust chamber thermal mechanical fatigue fracture phase field life prediction
PACS:
V434.24
DOI:
10.3969/j.issn.1672-9374.2024.01.007
Abstract:
Abstract:In order to analyze the stress and strain distribution of the regeneratively cooled thrust chamber in service and investigate the deformation and fatigue behavior under cyclic thermo-mechanical load, a thermal-elastic-plastic coupled fatigue fracture phase field model is established. The evolution of fracture order parameter is calculated and the fatigue life of the thrust chamber structure can be estimated. The distribution of temperature and the thermal eigenstrain is solved by the heat conduction equation. The stress-strain response and order parameter evolution are solved by using the stress equilibrium equation and phase field equation, respectively. The fatigue life of the thrust chamber structure could be evaluated by the cycle number when the order parameter reaches a critical value. The results indicate that the failure occurs first at the middle point of the lower surface of the thrust chamber wall, with a fatigue life of about 91 cycles. Under the cyclic temperature load, residual tensile strain is accumulated at that point. The inner wall's lower surface tends to collapse and be thinner until the structure fails. The phase field fatigue fracture model provides a novel methodology for predicting the fatigue life of the engine thrust chamber structure and helping the optimal design of the engine regeneratively cooled channel.

References:

[1] 顾孟奇,朱家才,郭万林,等.可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报,2023,44(23): 34-57.
GU M Q, ZHU J C, GUO W L, et al. Prospects for fatigue durability and reliability of reusable launch vehicle structures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 34-57.
[2]DAN D. NASA's second generation reusable launch vehicle program introduction, status and future plans[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2002.
[3]ACCETTURA A, ROSE L, IERARDO N, et al. Investigations and considerations about reusable LOx-HC engines as key technology for future launch vehicles[EB/OL].[2023-01-05]. https://www.semanticscholar.org/paper/Investigations-and-Considerations-about-Reusable-as-Accettura-Rose/daa9e7732bf4fdea831ce04fd2185ce0, 2002.
[4]吴峰,王秋旺,罗来勤,等.液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算[J].航空动力学报,2005,20(4): 707-712.
WU F, WANG Q W, LUO L Q, et al. Numerical simulation of heat transfer and fluid flow in cooling channel of the liquid rocket engine thrust chamber[J]. Journal of Aerospace Power, 2005, 20(4): 707-712.
[5]韩炜.液体火箭发动机再生冷却推力室耦合传热的数值研究[D].哈尔滨: 哈尔滨工程大学, 2017.
HAN W. Numerical research on the coupled heat transfer of thrust chamber in cooling channel of liquid rocket[D].Harbin: Harbin Engineering University, 2017.
[6]吴有亮,丁煜朔,刘潇,等.再生冷却推力室准二维传热数值计算[J].火箭推进,2023,49(2): 66-73.
WU Y L, DING Y S, LIU X, et al. Quasi-2D heat transfer calculation method of regenerative cooling thrust chamber[J]. Journal of Rocket Propulsion, 2023, 49(2): 66-73.
[7]孙冰,丁兆波,康玉东.液体火箭发动机推力室内壁寿命预估[J].航空动力学报,2014,29(12): 2980-2986.
SUN B, DING Z B, KANG Y D. Life prediction of liquid rocket engine thrust chamber liner wall[J]. Journal of Aerospace Power, 2014, 29(12): 2980-2986.
[8]孙冰,宋佳文.液氧甲烷发动机台阶型冷却通道的耦合传热特性[J].航空动力学报,2016,31(12): 2972-2978.
SUN B, SONG J W. Coupled heat transfer characterisitcs of stepped cooling channel of liquid oxygen/methane rocket engine[J]. Journal of Aerospace Power, 2016, 31(12): 2972-2978.
[9]孙冰,宋佳文.液体火箭发动机推力室壁瞬态加载三维热结构分析[J].推进技术,2016,37(7): 1328-1333.
SUN B, SONG J W. Three dimensional transient loading thermomechanical analysis of LRE thrust chamber wall[J]. Journal of Propulsion Technology, 2016, 37(7): 1328-1333.
[10]徐绍桐,王长辉,杨成骁.液体火箭发动机再生冷却结构弹塑性分析[J].航空动力学报,2022,37(8): 1664-1673.
XU S T, WANG C H, YANG C X. Elastoplastic analysis of regenerative cooling structure of liquid rocket engine[J]. Journal of Aerospace Power, 2022, 37(8): 1664-1673.
[11]张明,孙冰.液氧/甲烷发动机变截面冷却通道传热数值研究[J].火箭推进,2019,45(2): 9-15.
ZHANG M, SUN B. Numerical study of heat transfer in variable cross-section cooling channels of LOx/methane rocket engines[J]. Journal of Rocket Propulsion, 2019, 45(2): 9-15.
[12]CHEN L Q. Phase-field models for microstructure evolution[J]. Annual Review of Materials Research, 2002, 32: 113-140.
[13]TANG W, TANG Z M, LU W J, et al. Modeling and prediction of fatigue properties of additively manufactured metals[J]. Acta Mechanica Solida Sinica, 2023, 36(2): 181-213.
[14]LIANG C G, YIN Y, WANG W X, et al. A thermodynamically consistent non-isothermal phase-field model for selective laser sintering[J]. International Journal of Mechanical Sciences, 2023, 259: 108602.
[15]FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342.
[16]GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London Series A, 1921, 221: 163-198.
[17]MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45): 2765-2778.
[18]MIEHE C, SCHAENZEL L M, ULMER H. Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 449-485.
[19]MIEHE C, HOFACKER M, SCHÄNZEL L M, et al. Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 486-522.
[20]ALESSI R, VIDOLI S, DE LORENZIS L. A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case[J]. Engineering Fracture Mechanics, 2018, 190: 53-73.
[21]CARRARA P, AMBATI M, ALESSI R, et al. A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112731.
[22]BORDEN M J, HUGHES T J R, LANDIS C M, et al. A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 130-166.
[23]黄峻峰,贺尔铭,易金翔,等.再生冷却推力室热机疲劳寿命预测研究[J].西北工业大学学报,2022,40(4): 723-731.
HUANG J F, HE E M, YI J X, et al. Research on thermomechanical fatigue life prediction of regenerative cooling thrust chamber[J]. Journal of Northwestern Polytechnical University, 2022, 40(4): 723-731.
[24]ESPOSITO J, ZABORA R. Thrust chamber life prediction. Volume 1: mechanical and physical properties of high performance rocket nozzle Materials[EB/OL][2022-12-25]. https://www.semanticscholar.org/paper/Thrust-chamber-life-prediction.-Volume-1%3A-and-of-Esposito-Zabora/e756d5fb3f2b316320a1cad2b4737fab84857bbf.
[25]ELLIS D, MICHAL G M. Mechanical and thermal properties of two Cu-Cr-Nb alloys and NARloy-Z[EB/OL]. [2023-01-07].https://www.semanticscholar.org/paper/Mechanical-and-Thermal-Properties-of-Two-Cu-Cr-Nb-Ellis-Michal/6f2981d2c19c21d11bfadc698da7c5f972e5e840.

Memo

Memo:
-
Last Update: 1900-01-01