|Table of Contents|

Effect of hydroforming on structural fatigue life of multilayer reinforced S-shaped bellows in liquid rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年01期
Page:
113-126
Research Field:
目次
Publishing date:

Info

Title:
Effect of hydroforming on structural fatigue life of multilayer reinforced S-shaped bellows in liquid rocket engine
Author(s):
ZHANG Han ZHANG Dongsheng ZHU Weiping
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Sciences, Shanghai University, Shanghai 200072, China
Keywords:
reusable liquid rocket engine reinforced S-shaped bellows fatigue life hydroforming
PACS:
V434.23
DOI:
10.3969/j.issn.1672-9374.2024.01.011
Abstract:
It is one of important issues in the development of reusable liquid rocket engine that refining the fatigue life assessment methods for reinforced S-shaped bellows in the gas swing system of liquid rocket engines and enhancing the prediction accuracy of its fatigue life. In order to acquire the actual life data after hydroforming and assess the impact of the forming process, a comprehensive fatigue life analysis method is proposed for multilayer reinforced S-shaped bellows. This method accounts for the disparate effects of the forming and preparation procedures on the geometrical configurations and mechanical properties of different structural regions. Based on the forming simulations and tensile test results, a finite element model of the actual bellows has been developed for three-dimensional simulation analysis to obtain the cyclic load information at the structural danger points under various high internal pressure and different oscillating operating conditions. In addition, based on the low cycle fatigue characteristics of bellows, the cycle life of bellows is estimated and compared by using the meridional stress-strain data and the Manson-Coffin(M-C)formula corrected by the average stress and strain. The results indicate that the location and size of the weak point of the bellows fatigue life are related to the cyclic swing angle. The fatigue predictive analyses considering hydroforming effects are more consistent with actual conditions, and show deviations from theoretical model predictions, highlighting the importance of considering these differences in structural design, optimization and health monitoring.

References:

[1] 吴燕生. 中国航天运输系统的发展与未来[J]. 导弹与航天运载技术, 2007(5): 1- 4.
WU Y S. Development and future of space transportation system of China[J]. Missiles and Space Vehicles, 2007(5): 1- 4.
[2]王小军. 中国航天运输系统未来发展展望[J]. 导弹与航天运载技术, 2021(1): 1- 6.
WANG X J. Future development of space transportation system of China[J]. Missiles and Space Vehicles, 2021(1): 1- 6.
[3]包为民. 可重复使用运载火箭技术发展综述[J].航空学报,2023,44(23): 629555.
BAO W M.A review of reusable launch vehicle technology development[J]. Chinese Journal of Aeronautics, 2023,44(23): 629555.
[4]顾孟奇,朱家才,郭万林,等. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J].航空学报,2023,44(23):628299.
GU M Q, ZHU J C, GUO W L, et al.Prospects for fatigue durability and reliability of reusable launch vehicle structures[J]. Chinese Journal of Aeronautics, 2023, 44(23): 628299.
[5]崔朋, 刘阳, 朱雄峰, 等. 重复使用液体火箭发动机典型特征分析[J]. 载人航天, 2023, 29(3): 345- 353.
CUI P, LIU Y, ZHU X F, et al. Typical characteristic analysis of reusable liquid rocket engines[J]. Manned Spaceflight, 2023, 29(3): 345- 353.
[6]谭永华. 中国重型运载火箭动力系统研究[J]. 火箭推进, 2011, 37(1): 1- 6.
TAN Y H. Research on power system of heavy launch vehicle in China[J]. Journal of Rocket Propulsion, 2011, 37(1): 1- 6.
[7]李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831- 864.
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831- 864.
[8]叶梦思. 基于有限元分析的Ω形波纹管液压成形研究及波纹管轻量化设计[D]. 北京: 北京化工大学, 2018.
YE M S. Research on hydroforming of toroidal bellows and light-weight design of bellows based on finite element analysis[D].Beijing: Beijing University of Chemical Technology, 2018.
[9]HARTL C. Research and advances in fundamentals and industrial applications of hydroforming[J]. Journal of Materials Processing Technology, 2005, 167(2/3): 383-392.
[10]葛子余. 金属软管[M]. 北京: 宇航出版社, 1985.
[11]朱卫平, 黄黔. 中细柔性圆环壳整体弯曲的一般解及在波纹管计算中的应用(Ⅲ): C型波纹管的计算[J]. 应用数学和力学, 2002, 23(10): 1025-1034.
ZHU W P, HUANG Q. General solution of the overall bending of flexible circular ring shells with moderately slender ratio and applications to the bellows(Ⅲ): Calculation for C-shaped bellows[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1025-1034.
[12]朱卫平, 黄黔. 中细柔性圆环壳整体弯曲的一般解及在波纹管计算中的应用(Ⅱ): Ω型波纹管的计算[J]. 应用数学和力学, 2002, 23(8): 798-804.
ZHU W P, HUANG Q. General solution of the overall bending of flexible circular ring shells with moderately slender ratio and applications to the bellows(Ⅱ): Calculation for omega-shaped bellows[J]. Applied Mathematics and Mechanics, 2002, 23(8): 798-804.
[13]徐学军, 任武, 袁喆, 等. 增强S型波纹管结构耐压强度分析技术[J]. 火箭推进, 2019, 45(1): 19-24.
XU X J, REN W, YUAN Z, et al. Compression strength analysis of the reinforced S-shaped bellows[J]. Journal of Rocket Propulsion, 2019, 45(1): 19-24.
[14]霍世慧, 许红卫, 朱卫平, 等. 增强S形波纹管内压稳定性分析方法[J]. 火箭推进, 2022, 48(4): 66-71.
HUO S H, XU H W, ZHU W P, et al. Buckling of the reinforced S-shaped bellows under internal pressure[J]. Journal of Rocket Propulsion, 2022, 48(4): 66-71.
[15]赵剑, 谭永华, 陈建华, 等. 重型发动机S型波纹管承压与变形补偿结构参数敏感特性[J]. 火箭推进, 2022, 48(2): 36- 44.
ZHAO J, TAN Y H, CHEN J H, et al. Sensitive characteristics of structural parameters of pressure bearing and deformation compensation of S-shaped bellows in heavy duty engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 36- 44.
[16]李上青. 基于有限元的波纹管疲劳寿命影响因素分析[J]. 管道技术与设备, 2016(3): 34- 37.
LI S Q. Analysis of factors of bellow's fatigue life based on finite element method[J]. Pipeline Technique and Equipment, 2016(3): 34- 37.
[17]陈友恒, 段玫. U形波纹管疲劳寿命有限元分析[J]. 材料开发与应用, 2013, 28(1): 62- 66.
CHEN Y H, DUAN M. Finite element analysis to fatigue life of U-shape bellows[J]. Development and Application of Materials, 2013, 28(1): 62- 66.
[18]王伟静, 杨玉强, 闫书丽, 等. 位移载荷作用下U形波纹管的疲劳寿命研究[J]. 压力容器, 2022, 39(1): 63- 68.
WANG W J, YANG Y Q, YAN S L, et al. Research on fatigue life of non-reinforced U-shaped bellows under displacement load[J]. Pressure Vessel Technology, 2022, 39(1): 63- 68.
[19]张祖铭, 李亮, 于文峰, 等. 三层U形波纹管疲劳寿命影响因素分析[J]. 压力容器, 2021, 38(10): 47- 52.
ZHANG Z M, LI L, YU W F, et al. Analysis of factors influencing fatigue life of three-layer U-shaped bellows[J]. Pressure Vessel Technology, 2021, 38(10): 47- 52.
[20]于长波, 王建军, 李楚林, 等. 多层U形波纹管的疲劳寿命有限元分析[J]. 压力容器, 2008, 25(2): 23- 27.
YU C B, WANG J J, LI C L, et al. Finite element analysis to multilayer U-shaped bellows' fatigue life[J]. Pressure Vessel Technology, 2008, 25(2): 23- 27.
[21]郜慧广, 刘静, 高亚东, 等. 考虑成形与循环滞后的波纹管疲劳寿命研究[J]. 重型机械, 2023(1): 19- 26.
GAO H G, LIU J, GAO Y D, et al. Research on fatigue life of bellows considering forming and cyclic hardening[J]. Heavy Machinery, 2023(1): 19- 26.
[22]YUAN Z, HUO S H, REN J T. Effects of hydroforming process on fatigue life of reinforced S-shaped bellows[J]. Key Engineering Materials, 2019, 795: 296- 303.
[23]张文良, 曹景浩, 马海峰. 金属波纹管疲劳寿命优化设计研究[J]. 阀门, 2022(6): 424- 427.
ZHANG W L, CAO J H, MA H F. Study on fatigue life optimization design of metal bellows[J]. Valve, 2022(6): 424- 427.
[24]薛克敏, 张容, 孙风成, 等. SUS321不锈钢波纹管液压成形组织演变和疲劳性能[J]. 塑性工程学报, 2023, 30(1): 28- 36.
XUE K M, ZHANG R, SUN F C, et al. Microstructure evolution and fatigue properties of SUS321 stainless steel bellows hydroforming[J]. Journal of Plasticity Engineering, 2023, 30(1): 28- 36.
[25]卢江, 陶红蕾, 孟宪斌, 等. 影响金属波纹管成形减薄量的主要因素[J]. 管道技术与设备, 2013(3): 58- 59.
LU J, TAO H L, MENG X B, et al. The main factors influemcing the thickness reduction of corrugated metal tube[J]. Pipeline Technique and Equipment, 2013(3): 58- 59.
[26]李晓旭, 付饶. 波纹管成型用薄板在不同热处理条件下组织和性能研究[J]. 管道技术与设备, 2023(4): 11- 17.
LI X X, FU R. Study on microstructure and properties of sheet for bellows corrugation under different heat treatment conditions[J]. Pipeline Technique and Equipment, 2023(4): 11- 17.
[27]李凯尚, 彭剑, 彭健. 预应变对奥氏体不锈钢力学行为的影响及本构模型的构建[J]. 材料工程, 2018, 46(11): 148- 154.
LI K S, PENG J, PENG J. Influence of pre-strain on mechanical behavior of austenitic stainless steel and construction of constitutive models[J]. Journal of Materials Engineering, 2018, 46(11): 148- 154.
[28]韩豫, 陈学东, 刘全坤, 等. 奥氏体不锈钢应变强化工艺及性能研究[J]. 机械工程学报, 2012, 48(2): 87- 92.
HAN Y, CHEN X D, LIU Q K, et al. Study on technique and properties of cold stretching for austenitic stainless steels[J]. Journal of Mechanical Engineering, 2012, 48(2): 87- 92.
[29]李凯, 薛河, 崔英浩, 等. 304不锈钢冷加工过程中应力-应变本构方程的建立与验证[J]. 塑性工程学报, 2019, 26(2): 225- 232.
LI K, XUE H, CUI Y H, et al. Establishment and validation of stress-strain constitutive equation during cold working of 304 stainless steel[J]. Journal of Plasticity Engineering, 2019, 26(2): 225- 232.
[30]孟庆当, 李河宗, 董湘怀, 等. 304不锈钢薄板微塑性成形尺寸效应的研究[J]. 中国机械工程, 2013, 24(2): 280- 283.
MENG Q D, LI H Z, DONG X H, et al. Investigation of size effects of 304 stainless steel foils in microforming processes[J]. China Mechanical Engineering, 2013, 24(2): 280- 283.
[31]姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003.
[32]徐鹏. 金属材料应变寿命曲线估算的新方法[D]. 南京: 南京航空航天大学, 2012.
XU P. A new method for estimating strain life curve of metallic materials[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.

Memo

Memo:
-
Last Update: 1900-01-01