|Table of Contents|

Experiment on the fuel active cooling of multi-working combustion chamber(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2024年01期
Page:
127-134
Research Field:
目次
Publishing date:

Info

Title:
Experiment on the fuel active cooling of multi-working combustion chamber
Author(s):
HU Jinhua1 ZHANG Zhongli1 QIU Chengxu2 ZHOU Weixing2
1. National Key Laboratory of Aerospace Liquid Propulsion, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China; 2. Harbin Institute of Technology, Harbin 150001, China
Keywords:
scramjet multi-working combustion chamber active cooling
PACS:
V434.3
DOI:
10.3969/j.issn.1672-9374.2024.01.012
Abstract:
When the hypersonic vehicle jumps between different Mach numbers and altitudes, the combustion chamber works intermittently under different working conditions, and the thermal load changes alternately. In order to ensure the normal operation of the combustion chamber structure, fuel active cooling is used to protect the combustion chamber. In order to verify whether the combustion chamber coke and deposition of carbon during the active cooling of the fuel affect its normal work, a multi-worked combustion chamber fuel active cooling simulation test device is designed. The device adopts the method of electric heating to simulate the alternating heat load generated by high-temperature incoming flow, and the active cooling combustion chamber simulation test part is tested and assessed in the hot-wall-cold-oil, hot-wall-hot-oil and fuel-non-flow state. The results show that the thermal structure of the active cooling combustion chamber passes through the hot-wall-cold-oil more than 3 times. After the hot-wall-hot-oil cycle test, the specimen has not been damaged. With the increase of the number of cycles, the flow resistance of the specimen is relatively small, and the pressure difference of the hot-wall-hot-oil condition is higher than that of the hot-wall-cold-oil conditions. The specimen is examined, and it is found that the carbon deposition in the cooling channel is not obvious, and the carbon deposition mainly appears in the collector cavity of the fuel outlet.

References:

[1] 肖红雨, 高峰, 李宁. 再生冷却技术在超燃冲压发动机中的应用与发展[J]. 飞航导弹, 2013(8): 78-81.
XIAO H Y, GAO F, LI N. Application and development of regenerative cooling technology in scramjet[J]. Aerodynamic Missile Journal, 2013(8): 78-81.
[2]PAGEL L L, WARMBOLD W R. Active cooling of a hydrogen-fueled scramjet engine[J]. Journal of Aircraft, 1969, 6(5): 472- 474.
[3]郭朝邦, 李文杰, 邢娅. 法国超燃冲压发动机主动冷却耐高温结构部件研究进展[J].飞航导弹, 2011(11): 84-91.
GUO C B, LI W J, XING Y. Research progress of active cooling of high temperature resistant structural components in French scramjet[J]. Aerodynamic Missile Journal, 2011(11): 84-91.
[4]陈锐达, 徐辉, 陈泓宇, 等. 1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J]. 火箭推进, 2023, 49(4): 17-25.
CHEN R D, XU H, CHEN H Y, et al. Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J]. Journal of Rocket Propulsion, 2023, 49(4): 17-25.
[5]卞香港, 李龙飞, 王化余, 等. 基于3D打印的过氧化氢/煤油再生冷却推力室设计及试验[J]. 火箭推进, 2023, 49(4): 74-81.
BIAN X G, LI L F, WANG H Y, et al. Design and experiment of hydrogen peroxide/kerosene thrust chamber with regenerative cooling based on 3D printing[J]. Journal of Rocket Propulsion, 2023, 49(4): 74-81.
[6]刘世俭, 刘兴洲. 超燃冲压发动机可贮存碳氢燃料再生主动冷却换热过程分析[J]. 飞航导弹, 2009(3): 48-52.
LIU S J, LIU X Z. Analysis of regenerative active cooling heat transfer process of storable hydrocarbon fuel in scramjet[J]. Winged Missiles Journal, 2009(3): 48-52.
[7]FU Y C, WEN J, TAO Z, et al. Surface coking deposition influences on flow and heat transfer of supercritical hydrocarbon fuel in helical tubes[J]. Experimental Thermal and Fluid Science, 2017, 85: 257-265.
[8]LIANG K M, YANG B E, ZHANG Z L. Investigation of heat transfer and coking characteristics of hydrocarbon fuels[J]. Journal of Propulsion and Power, 1998, 14(5): 789-796.
[9]SUN F, LI X, BOETCHER S K S, et al. Inhomogeneous behavior of supercritical hydrocarbon fuel flow in a regenerative cooling channel for a scramjet engine[J]. Aerospace Science and Technology, 2021, 117: 106901.
[10]BATES R, EDWARDS J, MEYER M. Heat transfer and deposition behavior of hydrocarbon rocket fuels[C]//41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2003.
[11]杨彩华. 冷却通道表面处理对超临界烃热裂解结焦的抑制作用[D]. 天津: 天津大学, 2012.
YANG C H. Coke inhibition for thermal cracking of supercritical hydrocarbon over treated surface of cooling channel[D].Tianjin: Tianjin University, 2012.
[12]张霖琪, 蒋杰, 阮灿,等. 增材制造螺旋圆管航空煤油热氧化结焦特性的试验研究[J].航空动力学报,2022,37(7):1403-1412.
ZHANG L Q, JIANG J, YUAN C, et al.Experimental study on thermal oxidation coking characteristics of aviation kerosene in additively manufactured helical tubes[J]. Journal of Aerospace Power, 2022, 37(7): 1403-1412.
[13]王英杰, 徐国强, 邓宏武, 等. 进口温度影响航空煤油结焦特性实验[J]. 航空动力学报, 2009, 24(9): 1972-1976.
WANG Y J, XU G Q, DENG H W, et al. Experimental study of influence of inlet temperature on aviation kerosene coking characteristics[J]. Journal of Aerospace Power, 2009, 24(9): 1972-1976.
[14]GASCOIN N, GILLARD P, BERNARD S, et al. Characterisation of coking activity during supercritical hydrocarbon pyrolysis[J]. Fuel Processing Technology, 2008, 89(12): 1416-1428.
[15]WICKHAM D, ALPTEKIN G, ENGEL J, et al. Additives to reduce coking in endothermic heat exchangers[C]//35th Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1999.
[16]张枭雄, 侯凌云, 莫崇康,等. 航空煤油热裂解结焦实验[J]. 航空动力学报,2017,32(6): 1307-1312.
ZHANG X X,HOU L Y,MO C K,et al.Experiment on thermal cracking coke of aviation kerosene[J]. Journal of Aerospace Power, 2017, 32(6): 1307-1312.
[17]JIN B T, JING K, LIU J, et al. Pyrolysis and coking of endothermic hydrocarbon fuel in regenerative cooling channel under different pressures[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 117-126.
[18]张强,汪旭清,刘国柱,等. 主动冷却通道内吸热型碳氢燃料热裂解结焦抑制机理[J]. 推进技术,2013,34(12): 1713-1718.
ZHANG Q, WANG X Q, LIU G Z, et al. Inhibition mechanism of pyrolytic cokes from endothermic hydrocarbon fuels in regenerative cooling channels[J]. Journal of Propulsion Technology, 2013, 34(12): 1713-1718.
[19]王新竹, 张泰昌, 陆阳,等. 主动冷却燃烧室燃烧与传热耦合过程迭代分析设计方法[J]. 推进技术,2014,35(2): 213-219.
WANG X Z, ZHANG T C, LU Y, et al.An iterative analysis and design method for study of coupling processes of combustion and heat transfer in actively-cooled scramjet combustor[J]. Journal of Propulsion Technology, 2014,35(2): 213-219.
[20]王厚庆, 何国强, 刘佩进, 等. 主动冷却超燃冲压发动机最大工作马赫数评估[J]. 固体火箭技术, 2010, 33(4): 377-381.
WANG H Q, HE G Q, LIU P J, et al. Evaluation on maximum flight Mach number of active cooling scramjet[J]. Journal of Solid Rocket Technology, 2010, 33(4): 377-381.
[21]杨样, 张磊, 张若凌, 等. 超燃冲压发动机燃烧室主动冷却设计研究[J]. 推进技术, 2014, 35(2): 208-212.
YANG Y, ZHANG L, ZHANG R L, et al. Design research of an actively fuel-cooled scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(2): 208-212.

Memo

Memo:
-
Last Update: 1900-01-01