航天推进技术研究院主办
JI Jun-feng,WU Guang-zhong,MA Li-ya,et al.Multiple-working-conditions flowrate control for liquid engine test[J].Journal of Rocket Propulsion,2011,37(02):71-75.
液体推进剂发动机试验多工况流量控制方法
- Title:
- Multiple-working-conditions flowrate control for liquid engine test
- 文章编号:
- 1672-9374(2011)02-0025-05
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 分析了液体发动机试验多工况流量控制的难点及单个汽蚀管在流量控制中的缺点,提出了一种汽蚀管组合方法来实现发动机试验多工况流量控制。利用汽蚀管的汽蚀裕度的特点,指出了单个汽蚀管可以覆盖的工况范围。首先计算得到未确定汽蚀管工况中满足要求的具有最小喉部直径汽蚀管,然后计算该汽蚀管可以覆盖的工况,最后计算该汽蚀管与已得到的汽蚀管的组合所能覆盖的工况,直到所有工况均已得到对应的汽蚀管或汽蚀管组。计算实例表明,可以用较少的汽蚀管通过不同的组合方式来实现多工况流量控制。通过发动机试验证明,本方法可以经济、有效地解决多工况流量控制问题。
- Abstract:
- After analyzing the difficulty of the multiple-working-condition flowrate control during the liquid engine test and the shortcoming of the single cavitation venturi for the flowrate control, a cavitation venturi combination method is proposed. The characteristic of the cavitation margin of the venturi is considered in the method. The range of the working-conditions covered by the single venturi is pointed out in this paper. Firstly, the minimum throat diameter satisfying the demand of the working-conditions is obtained by computation, and then the working-conditions covered by this venturi are computed. Finally, the working-conditions covered by the combination of the venturi and the previously-obtained venturis are eliminated until no working-condition remains. The instance shows that less venturis can realize the flowrate control of the multiple-working-condition engine test and the cavitation margin affects the result. Test proves that the proposed method can solve the problem of the multiple-working-condition flowrate control effectively and economically .
参考文献/References:
[1] XU C, HEISTER S D, COLLICOTT S C. Modeling cavitating venturi flows[J]. Journal of Propulsion and Power, 2002, 18 (6): 1227-1234.
[2]郭霄峰. 液体火箭发动机试验[M]. 北京: 宇航出版社, 1990.
[3]丁猛, 吴继平, 梁剑寒, 等. 文氏管在煤油燃料超燃冲压发动机中的应用[J]. 推进技术, 2005, 26(1): 16-19.
[4]张小斌, 曹潇丽, 邱利民, 等. 液氧文氏管汽蚀特性计算流体力学研究[J]. 化工学报, 2009, 60(7): 1638-1643.
[5]沈赤兵, 吴继平. 可调汽蚀文氏管试验研究[J]. 推进技术, 2004, 25(5): 473-476.
[6]HOSANGADI A, AHUJA V. Numerical study of cavitation in cryogenic fluids [J]. Journal of Fluids Engineering, 2005, 127 (2): 267-281.
[7]RHEE S H, KAWAMURA T, LI H Y. Propeller cavitation study using an unstructured grid based Navier-Stoker solver [J]. Journal of Fluids Engineering, 2005, 127 (5): 986-994.
[8]岳伟挺. 基于文丘里管的气液两相流参数检测方法研究[D]. 杭州: 浙江大学, 2004.
[9]艾卫国, 周月桂, 徐通模, 等. 非标准文氏管气固两相流阻力特性的研究[J]. 热能动力工程, 2000, 25(6): 607-610.
[10]中国航天工业总公司. QJ 1783A-96液体火箭发动机汽蚀文氏管通用规范[S]. 北京: 中国航天工业总公司第七○八研究所, 1997.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(02):1.
[2]秦永涛,宋 阳,苏红芳,等.火箭发动机试验管道多余物人机环境控制方法[J].火箭推进,2015,41(06):80.
QIN Yongtao,SONG Yang,SU Hongfang,et al.Method of man-machine-environment control over foreign object debris in pipelines used in rocket engine test[J].Journal of Rocket Propulsion,2015,41(02):80.
[3]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(02):1.
[4]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(02):89.
[5]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(02):95.
[6]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(02):61.
[7]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(02):74.
[8]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(02):1.
[9]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(02):15.
[10]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(02):118.
备注/Memo
收稿日期:2010-10-25;修回日期:2010-11-11
基金项目: 国家航天技术支撑项目
作者简介: 姬俊锋(1981—),男,博士,研究领域为液体火箭发动机试验技术