航天推进技术研究院主办
XING Bao-yu,HUANG Min-chao,CHENG Mou-sen,et al.Thermal efficiency analysis of solar thermal propulsion system[J].Journal of Rocket Propulsion,2013,39(05):23-30.
太阳能热推进系统效率分析
- Title:
- Thermal efficiency analysis of solar thermal propulsion system
- 文章编号:
- 1672-9374(2013)05-0023-08
- 分类号:
- V439.6
- 文献标志码:
- A
- 摘要:
- 太阳能热推进采用小分子量气体作为推进剂可以获取800~900 s高比冲,但提高推进系统的换热效率是目前亟待解决的问题。本研究建立了太阳能热推进系统主要部件的基本分析模型,在利用有限单元法进行热分析的基础上,对系统在多种工况下的相关参数进行了计算,分析了各部件主要参数对提高太阳能热推进系统热效率和推进效率的影响,得出了系统效率在不同工作状态下的变化规律,并提出了提高系统效率的措施。
- Abstract:
- Solar thermal propulsion system can provide a high special impulse of 800 s~900 s when it takes small molecular weight gas as propellant, but it is a significant issue to improve the heat transfer efficiency of the thermal propulsion system. The basic analysis models of main parts in the solar thermal propulsion system were built. Based on thermal analysis performed by using the finite element method, the correlative parameters of the system at different working conditions were calculated. The influence of the main parameters of each assembly unit on the improvement of thermal efficiency and propulsive efficiency of the solar thermal propulsion system was analyzed. The change rule of system efficiency in different working status was achieved. The measures to improve the thermal efficiency of the system are proposed in this paper.
参考文献/References:
[1]SCHARFE D B, YOUNG M. A study of solar thermal propulsion system enhancement via thermal storage and thermal-electric conversion[C]// The 57th JANNAF Joint Subcommittee Meeting. Colorado Springs, CO: JANNAF, 2010: 345-352.
[2]SCHARFE D B, YOUNG M P, GILPIN M R, et al. High energy advanced thermal storage for spacecraft solar ther- mal power and propulsion systems, A887455[R]. Huntsville, AL: JANNAF, 2011.
[3]SHIMIZU M, ITOH K, NAKAMURA Y. Very small solar thermal thruster made of single crystal tungsten for micro/nanosatellites[R]. Huntsville, Alabama, USA: AIAA, 2000.
[4]OLSEN A D, CADY E C, JENKINS D S, et al. Solar ther- mal upper stage cryogen system engineering checkout test, AIAA 99-2604[R]. Los Angeles, California, USA: AIAA, 1999.
[5]KENNEDY F G, PALMER P L. Preliminary design of a micro-scale solar thermal propulsion system, AIAA 2002-3928[R]. USA: AIAA, 2002.
[6]WONG W A, GENG S M, CASTLE C H, et al. Design, fabrication and test of a high efficiency refractive se- condary concentrator for solar applications, AIAA 2000-2998[R]. USA: AIAA, 2000.
[7]SALEM J A, QUINN G D. Failure analysis of sapphire re- fractive secondary concentrators, NASA/TM-2009-215802 [R]. USA: NASA, 2009.
[8]夏广庆, 毛根旺, 唐金兰, 等. 折射式二次聚光太阳能热推力器性能预示[J]. 固体火箭技术, 2005, 28(2): 79-82.
[9]张纯良, 王平. 太阳能火箭发动机吸热/推力室流场及性能计算[J]. 航空动力学报, 2006, 21(5): 943-948.
[10]张纯良, 张振鹏, 魏志明. 太阳能火箭发动机聚光器设计方法[J]. 航空动力学报, 2004, 19(4): 557-561.
[11]BREND N. System study for a solar thermal thruster with thermal storage, AIAA 2003-5031[R]. USA: AIAA, 2003.
[12]COLONNA G, CAPITTA G, CAPITELLI M, et al. Model for ammonia solar thermal thruster [J]. Journal of Ther- mophysics and Heat Transfer, 2006, 20(4): 772-779.
[13]杨杰, 杨立军. 推进剂通道结构对太阳热发动机影响数值研究[J]. 航空动力学报, 2010, 25(4): 200-206.
[14]KHARYTONOV O, KIFORENKO B. Finite-thrust opti- mization of interplanetary transfers of space vehicle with bimodalnuclear thermal propulsion, IAC-10-C1.9.7[R].USA: IAF, 2010.
[15]ANDERSON D J, PENCIL E, PETERSON T. et al. In- -Space propulsion technology products for NASA's future science and exploration missions, N20110016163[R]. USA: NASA,2011.
[16]FINOGENOV S, KUDRIN O. Spectral-selective solar thermal micro-thruster, AIAA 2008-4863[R]. USA: AIAA, 2008.
[17]LEENDERS H C M, ZANDBERGEN B T C. Develop- ment of solar thermal thruster system, IAC-08-D1.1.01[R]. USA: IAF, 2008.
相似文献/References:
[1]李文龙,郭海波,南向谊.空气涡轮火箭发动机热力循环特性分析[J].火箭推进,2015,41(04):48.
LI Wen-long,GUO Hai-bo,NAN Xiang-yi.Analysis on thermodynamic cycle characteristics
of air-turbo-rocket engine[J].Journal of Rocket Propulsion,2015,41(05):48.
备注/Memo
收稿日期:2013-06-03;修回日期:2013-08-27
基金项目:部委级资助项目(9140A20100413KG01293)
作者简介:邢宝玉(1984—),男,博士研究生,研究领域为热推进技术