航天推进技术研究院主办
QIN Yong-tao,CAO Wen-qing,LI Dang-ke,et al.The man-machine-environment reliability evaluation method of cryogenic pneumatic valve[J].Journal of Rocket Propulsion,2014,40(02):82-89.
低温气动阀的人机环境可靠性评估方法
- Title:
- The man-machine-environment reliability evaluation method of cryogenic pneumatic valve
- Keywords:
- man-machine-environment system engineering; cryogenic pneumatic valve; reliability assessment
- 分类号:
- V434.3-34
- 文献标志码:
- A
- 摘要:
- 为了在液体火箭发动机试验过程中全面定量识别低温气动阀故障产生根源,针对低温气动阀可靠性分析过程的动态时变问题,首先通过引入人机环境系统工程理论,结合低温气动阀工作原理,从人机环境方面分析低温气动阀可靠性影响因素,建立基于人机环境系统工程的低温气动阀时变可靠性模型;并在此基础上,通过从人机环境范围定量分析低温气动阀的可靠度与失效率,对低温气动阀可靠性薄弱环节进行评估。最后通过具体的应用实例验证了该方法的有效性与准确性,为定量分析和改进低温气动阀可靠性提供了一种方法指导,为提高液体火箭发动机性能准确客观评价以及研制提供了支撑。
- Abstract:
- In order to determinate the faults source of the cryogenic pneumatic valve in the process of liquid rocket engine test and to solve the dynamic time varying problem existing in reliability analysis of cryogenic pneumatic valve, the reliability influencing factors of the cryogenic pneumatic valve were analyzed in the aspect of man-machine-environment, and the man-machine- environment-based time-varying reliability model of cryogenic pneumatic valve was constructed by means of the man-machine-environment system engineering theory and the operating principle of the cryogenic pneumatic valve. On the basis of this model, the reliability degree and fault rate of the cryogenic pneumatic valve were quantitatively analyzed in the range of man-machine- environment, and the vulnerable spots of cryogenic pneumatic valve are evaluated. Finally, this method's effectiveness and accuracy were demonstrated and validated by an example. Consequently, this method highly provided an approach for the quantitative analysis and reliability improvement of the cryogenic pneumatic valve, and a support for objective evaluation of liquid rocket engine perfor- mance.
参考文献/References:
[1]王永忠,王宁. 低温阀在液体火箭发动机试验中的应用[J]. 火箭推进, 2004, 30(1): 32-37.
[2]张晓东. 航天器先导式开关阀的动态特性分析与试验研究[D]. 上海: 上海交通大学, 2011.
[3]LIU Song, YAO Bin. Adaptive robust control of progra- mmable valves with manufacturer supplied flow mapping only[C]// The 43rd IEEE Conference on Decision and Con- trol. Nassau: IEEE, 2004: 1117-1122.
[4]夏胜枝, 周明, 李希浩, 等. 高速强力电磁阀的动态响应特性[J]. 清华大学学报,2002, 42(2): 258-277.
[5]贾光政, 王宣银, 吴根茂. 超高压大流量气动开关阀的原理和动态特性研究[J]. 机械工程学报, 2004, 40(5): 77- 81.
[6]程亚威, 李小明, 陈维宇. 液氧主阀的方案及设计[J]. 火箭推进, 2007, 33(2): 17-19.
[7]石延平, 刘成文. 一种大流量高速开关阀的研究与设计[J]. 机械工程学报, 2004, 40(4): 195-198.
[8]戴佳, 黄敏超, 余勇, 等. 电磁阀动态响应特性仿真研究[J]. 火箭推进, 2007, 33(1): 40-48.
[9]RAO Z, BONE G M. Nonlinear modeling and control of servo pneumatic actuators control systems technology [J]. IEEE Transactions on Control System Technology, 2008, 16(3): 562-569.
[10]CAVALLO P A, HOSANGADI A, AHUJA V. Transient simulations of valve motion in cryogenic systems[C]// Proceedings of the 35th AIAA Fluid Dynamics Con- ference and Exhibit. USA: American Institute of Aero- nautics and Astronautics, 2009: 1-10.
[11]刘昆. 分级燃烧循环液氧/液氢发动机系统分布参数模型与通用仿真研究[D]. 长沙: 国防科学技术大学, 1999.
[12]LIU Kun, ZHANG Yu-lin. A study on versatile simul ation of liquid propellant rocket engine systems transients, AIAA 2000-3771 [R]. USA: AIAA, 2000.
[13]BOSNYATSKIJ G P, BARINUD V B, PARSADANOV G M, et al. Optimization of inter-relations of man- machine-external environment-reserve of reliability of system[J]. Gazovaya Promyshlennost, 2001 (12): 35- 40.
[14]龙升照. 钱学森与人机环境系统工程[C]//第八届中国人机环境系统工程大会. 深圳: [出版者不详], 2007.
[15]MA L H, YAN H Z. Comprehensive evaluation of fully mechanized mining face security based on unascer- tained-Information entropy model[C]// Proceedings of the 2nd IEEE International Conference on Computer Sci- ence and Information Technology. Beijing, China: IEEE, 2009: 268-271.
[16]高社生, 张玲霞. 可靠性理论与工程应用[M]. 北京: 国防工业出版社, 2002.
相似文献/References:
[1]秦永涛,沈继彬,李建军,等.低温气动阀动态响应特性的非线性分析方法[J].火箭推进,2013,39(06):23.
QIN Yong-tao,SHEN Ji-bin,LI Jian-jun,et al.Nonlinear analysis method for dynamic responding characteristics of cryogenic pneumatic valve[J].Journal of Rocket Propulsion,2013,39(02):23.
备注/Memo
收稿日期:2013-04-26;修回日期:2013-05-29 作者简介:秦永涛(1981—),男,博士,研究领域为液体火箭动力试验技术