航天推进技术研究院主办
ZHANG Shu-qiang,WANG Liang,ZHAO Wei-gang.Research on temperature field and heat deformation of mechanical seal in liquid rocket engine turbopump[J].Journal of Rocket Propulsion,2014,40(05):92-96.
液体火箭发动机涡轮泵用机械密封温度场及热载变形研究
- Title:
- Research on temperature field and heat deformation of mechanical seal in liquid rocket engine turbopump
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 基于ANSYS数值计算软件,建立了液体火箭发动机涡轮泵用机械密封的二维稳态传热模型,依靠经验公式确定了模型的对流换热系数。计算了密封环的温度场和热载变形,分析了密封端面比压、回流流量以及不同材质对密封温度场的影响规律。结果表明:密封端面最高温度发生在靠近密封环内径处,且密封端面比压越大密封环温度梯度越大;密封环热载变形呈收敛间隙,最大变形发生在动环端面的外径处,其值约为2.2 μm;密封环端面最高温度随回流流量增加而减小,当回流流量从0.1~0.6 kg/s变化时,密封环端面最高温度可降低18%(从100 ℃降至82 ℃);当回流流量增大到0.3 kg/s时,继续提高对密封环端面温升的控制不再显著;采用高导热系数的摩擦副材料能够显著降低端面温升和温度梯度,提高密封工作可靠性。
- Abstract:
- A two-dimensional steady-state heat-transfer model of mechanical seal in the liquid rocket engine turbopump was established based on ANSYS. The heat transfer coefficients of the model were determined according to the empirical formula. Based on the model, the temperature field and heat deformation of the sealing ring were calculated. The influences of specific pressure in seal face, cooling flow and different materials on the seal temperature distribution are analyzed. Simulation results show that the maximum temperature of the seal face appears near the inner of the seal ring and the temperature gradient increases with the increase in specific pressure; the heat deformation of the seal ring leads to a converged gap, and the maximum heat deformation occurs at the outer diameter of rotating seal ring, which is 2.2 μm; the maximum temperature decreases with an increase of the cooling flow, and the maximum temperature in the seal face decreases by 18% (from 100 ℃ to 82 ℃) when the cooling flow changes from zero to 0.6 kg/s; the maximum temperature reaches to a stable value, while the cooling flow increases to 0.3 kg/s. The sealing materials with high heat transfer coefficient can reduce the temperature rise and temperature gradient of the seal face dramatically, and improve the reliability of the seal.
参考文献/References:
[1]张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005.
[2]杜天恩. 轴承、端面密封在液氧中的运转试验[J]. 火箭推进, 2001, 27(3): 10-13.
[3]白东安, 段增斌, 张翠儒. 涡轮泵端面密封性能与漏气量影响研究[J]. 火箭推进, 2010, 36(1): 38-42.
[4]王涛, 黄伟峰, 王玉明. 机械密封液膜汽化问题研究现状与进展[J]. 化工学报, 2012, 63(11): 3375-3382.
[5]彭旭东, 顾永泉. 不同相态机械密封的性能计算[J]. 流体机械, 1994, 22(8): 20-24.
[6]郝木明, 李香, 李鲲, 等. 端面弧形浅槽机械密封温度场及变形研究[J]. 流体机械, 2010, 38(4): 23-27.
[7]顾永泉. 机械密封实用技术[M]. 北京: 机械工业出版社, 2007.
[8]张树强, 李双喜, 蔡纪宁, 等. 动静压混合式气体密封追随性及主动调控振动特性数值分析[J]. 航空学报, 2012, 33(7): 1336-1345.
[9]王胜军, 张书贵. 液膜润滑非接触式机械密封温度场分析[J]. 润滑与密封, 2009, 34(1): 73-76.
[10]王志豪, 索双富, 黄伟峰, 等. 机械密封对流传热系数数值研究[J]. 润滑与密封, 2011, 36(6): 29-33.
[11]刘伟, 彭旭东, 白少先, 等. 流体静压型机械密封的三维传热数学模型及端面温度分析[J]. 摩擦学报, 2010, 30(1): 57-63.
[12]顾伯勤, 周剑锋, 陈晔, 等. 机械密封端面间液膜摩擦热的传热规律[J]. 中国科学E辑: 技术科学, 2008, 38(1): 137-147.
[13]王胜军, 郝木明, 张书贵. 机械密封温度场计算[J]. 化工机械, 2004, 31(4): 203-207.
[14]彭旭东, 谢友柏, 顾永泉. 机械密封端面温度的确定[J]. 化工机械, 1996, 23(6): 333-366.
[15]周剑锋, 顾伯勤. 机械密封环的传热特性分析[J]. 机械工程学报, 2006, 42(9): 201-206.
相似文献/References:
[1]李建克,陈 杰,王少鹏.膜盒式机械密封阻尼设计研究[J].火箭推进,2012,38(06):41.
LI Jian-ke,CHEN Jie,WANG Shao-peng.Research on damper design of welded metal bellows for mechanical seal[J].Journal of Rocket Propulsion,2012,38(05):41.
[2]张树强,王良,陈杰.液氧泵机械密封用金属波纹管设计研究[J].火箭推进,2016,42(02):53.
ZHANG Shuqiang,WANG Liang,CHEN Jie.Design research of metal bellows for mechanical seal in liquid oxygen pump[J].Journal of Rocket Propulsion,2016,42(05):53.
[3]张峰,宁建华,赵伟刚,等.膜盒式机械密封设计研究[J].火箭推进,2016,42(06):48.
ZHANG Feng,NING Jianhua,ZHAO Weigang,et al.Design of bellows-type mechanical seal[J].Journal of Rocket Propulsion,2016,42(05):48.
[4]赵伟刚,张鹏鹏,任姗姗,等.液体火箭发动机涡轮泵机械密封磨损机理研究[J].火箭推进,2017,43(03):10.
ZHAO Weigang,ZHANG Pengpeng,REN Shanshan,et al.Research on wear mechanism of mechanical
seal for turbopump in liquid rocket engine[J].Journal of Rocket Propulsion,2017,43(05):10.
备注/Memo
收稿日期:2014-04-17;修回日期:2014-07-03 作者简介:张树强(1986—),男,硕士,研究领域为流体密封技术