航天推进技术研究院主办
XUE Cheng-you,NIE Wan-sheng,HE bo.Modeling and algorithm optimization of global reaction mechanism based on elementary reaction[J].Journal of Rocket Propulsion,2015,41(01):36-42.
基于基元反应的总包机理建模及算法优化
- Title:
- Modeling and algorithm optimization of global reaction mechanism based on elementary reaction
- Keywords:
- chemical kinetics; reduced mechanism; quasi-steady-state component density; linear quasi-steady-state approximation
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 以煤油/氧的化学动力学体系为例,介绍了基于基元反应的总包机理建模、反应速率计算等国际先进方法,归纳了针对化学动力学过程由建模到求解的一套完整流程。首先选用正十二烷作为煤油的替代燃料,通过直接关系图法(DRG)结合计算奇异值摄动法(CSP)的机理简化方法将正十二烷203组分、738步的详细反应机理化简为了32组分、36步的总包反应机理。为了计算总包反应速率,采用线性准稳态假设(LQSSA)计算准稳态组分浓度,解耦了准稳态组分间的非线性耦合,在保证计算精度的同时提高算法稳定性和效率。最终,通过VODE刚性积分求解器求解化学动力学方程组,并形成了一套可与CFD主程序耦合使用的化学动力学计算子程序。
- Abstract:
- Taking chemical kinetic system of kerosene/oxygen as an example, internationally advanced techniques for modeling and computing method of global reaction mechanism based on elementary reaction were introduced, and the whole flow of the process from modeling of global reaction mechanism to solution of the chemical kinetics equations is generalized. Firstly, n-dodecane was chosen to be the substitute fuel of kerosene. Through DRG+CSP mechanism reducing method, the detailed reaction mechanism of 203 components and 738 reactions was simplified to n-dodecane 32 components and 36 reactions. The gained global mechanism considered the underlying elementary reactions, reducing computing cost and chemical stiffness, and maintained high- accuracy at the same time. In order to calculate global reaction velocity, linear quasi-steady-state approximation (LQSSA) method is applied to decouple the guaranteed. At last,the chemical kinetic equation set is solved by VODE rigidity integral solver, and a subroutine which can be coupled with CFD main program is formed for chemical kinetics computation.
参考文献/References:
[1]黄玉辉. 液体火箭发动机燃烧稳定性理论、数值模拟和实验研究[D]. 长沙: 国防科学技术大学, 2001.
[2] BROWN P N, BYRNE G D, HINDMARSH A C. VODE: a variable-coefficient ODE solver[J]. SIAM Journal of Sci. Stat. Comput., 1989, 10: 1038-1051.
[3]LU T, LAW C K. On the applicability of directed relation graphs to the reductionof reaction mechanisms[J]. Com- bustion and Flame, 2006, 146: 472-483.
[4]LU T, LAW C K. Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane [J]. Combustion and Flame, 2006 (144): 24-36.
[5]LU T, LAW C K. Systematic approach to obtain analytic solutions of quasi steady state species in reduced mechanisms[J]. Journal of Phys. Chem. A, 2006 (110): 13202-13208.
[6]SCHULZ W D. Oxidation products of a surrogate JP-8 fuel [J]. ACS Petrol Chem Div Prepr, 1991, 37(2): 383-92.
[7]HENEGHAN S P, SCHULZ W D. Static tests of jet fuel thermal and oxidative stability[J]. Propul Power,1993, 9(1): 5-9.
[8]VIOLI A, YAN S, EDDINGS E G, et al. Experimental formulation and kinetic model for JP-8 surrogate mixture [J]. Combust Sci Technol, 2002, 174(11/12): 399-417.
[9]COOKE J A, BELLUCCI M, SMOOKE M D, et al. Computational and experimental study of JP-8, a Surrogate, and its components in counterflow diffusion flames[J]. Proc Combust Inst, 2005, 30: 439-46.
[10]AGOSTA A, CERNANSKY N P, MILLER D L, et al. Reference components of jet fuels: kinetic modeling and experimental results[J]. Exp Therm Fluid Sci, 2004, 28(7): 701-708.
[11]HUA Xiao-xiao, WANG Jing-bo, WANG Quan-de, Mechanism construction and simulation for the high- temperature combustion of n-dodecane [J]. Acta Phys. Chim. Sin, 2011, 27: 2755-2761.
[12]EBERIUS H, FRANK P, KICK T, et al. Project com- putational fluid dynamics for combustion, GRD1-1999- 10325 [R]. [S.l.]: GRD, 1999..
[13]方亚梅, 王全德, 王繁, 等. 正十二烷高温燃烧详细化学动力学机理的系统简化[J]. 物理化学学报, 2012, 28(11): 2536-2542.
相似文献/References:
[1]王大锐,程圣清,张 楠.利用PP法简化液体姿轨控发动机化学反应机理[J].火箭推进,2015,41(05):61.
WANG Darui,CHENG Shengqing,ZHANG Nan.Simplification for chemical reaction mechanism of liquid attitude and orbit control engine by PP method[J].Journal of Rocket Propulsion,2015,41(01):61.
备注/Memo
收稿日期:2014-10-08;修回日期:2014-11-10 基金项目:国家自然科学青年基金(51206185) 作者简介:薛诚尤(1990—),男,硕士研究生,研究领域为液体火箭发动机内流场仿真