航天推进技术研究院主办
LI Wen-long,GUO Hai-bo,NAN Xiang-yi.Analysis on thermodynamic cycle characteristics of air-turbo-rocket engine[J].Journal of Rocket Propulsion,2015,41(04):48-54.
空气涡轮火箭发动机热力循环特性分析
- Title:
- Analysis on thermodynamic cycle characteristics of air-turbo-rocket engine
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 采用热力学第一定律分析法分析了液体推进剂空气涡轮火箭发动机(Air Turbo Rocket, ATR)的基本热力过程,通过能量平衡计算得出了理想循环功、热效率和发动机比冲,确定了影响理想热力循环性能的5个特征参数,进而分析了地面静态和飞行状态下热力学特征参数对发动机热力循环性能的影响规律。结果表明:提高燃烧室温比、发生器温比和涡轮落压比有利于ATR循环功和燃料比冲性能的提升,提高压气机压比将在增大循环功和热效率的同时降低燃料比冲性能;理想循环热效率随来流马赫数的增大而增大,循环功和燃料比冲随来流马赫数的增大而先增大后减小,存在极大值。
- Abstract:
- The basic thermodynamic process of liquid propellant air-turbo-rocket (ATR) engine is analyzed with the first law analysis method of thermodynamics. The cycle work, thermal efficiency and specific impulse of the ideal ATR engine thermodynamic cycle were deducted through calculation of the energy balance. Furthermore, five thermodynamic characteristic parameters which might affect the ideal thermodynamic cycle performance were determined. The effects of these thermodynamic characteristic parameters on the performance of the engine thermodynamic cycle in the ground static state and flight state were analyzed. The results indicate that the increase of turbine expansion ratio, temperature ratios of gas generator and combustion chamber is helpful to the improvement of ATR thermodynamic cycle work and specific impulse, but the fuel specific impulse performance will be decreased while cycle work and thermal efficiency are increased if the compressor pressure ratio is increased; the ideal thermal efficiency increases incoming flow Mach number, whereas the thermodynamic cycle work and fuel specific impulse increase first, and then decrease with the increases of incoming flow Mach number.
参考文献/References:
[1]BOSSARD J A, CHRISTENSEN K L, FEDUN M H. Return of the solid fuel gas generator ATR, AIAA-87- 1997[R]. USA: AIAA, 1987.
[2]CHRISTENSEN K. Air turborocket/vehicle performance comparison[J]. Journal of Propulsion and Power, 1999, 15(5): 706-712.
[3]SATO T, TANATSUGU N, HATTA H, et al. Developent study of the ATREX engine for TSTO space plane, AIAA 2001-1839[R]. USA: AIAA, 2001.
[4]李成, 蔡元虎, 屠秋野, 等. 射流预冷却吸气式涡轮火箭发动机性能模拟[J]. 推进技术, 2011, 32(1): 1-4.
[5]CHRISTOPHER A S. A parametric study of a gas-generator airturbo ramjet(ATR), AIAA 86-1681[R]. USA: AIAA, 1986.
[6]DAVID R H. A Computer program for the design and off-design performance of an air turbo-rocket(ATR)[D]. Arlington, US: The University of Texas, 1996.
[7]LILLEY J S, HECHT S E, KIRKHAM B C, et al. Experimental evaluation of an air turbo ramjet, AIAA 94-3386 [R]. USA: AIAA, 1994.
[8]CLOUGH J A, LEWIS M J. Component matching for the air turborocket, AIAA 2004-3648[R]. USA: AIAA, 2004.
[9]BUSSI G, COLASURDO G, PASTRONE D. An analysis of air-turborocket performance[J]. Journal of Propulsion and Power, 1995, 11(5): 950-954.
[10]屠秋野, 陈玉春, 苏三买, 等. 固体推进剂吸气式涡轮火箭发动机的建模及特征研究[J]. 固体火箭技术, 2006, 29 (5): 317-319.
[11]陈湘, 陈玉春, 屠秋野, 等. 固体推进剂空气涡轮火箭发动机的非设计点性能研究[J]. 固体火箭技术, 2008, 31(5): 445-448.
[12]屠秋野, 丁朝霞, 陈玉春, 等. 固体推进剂吸气式涡轮火箭发动机的气动热力循环分析[J]. 固体火箭技术, 2009, 32(1): 53-57.
[13]李成, 周正, 屠秋野, 等. 吸气式涡轮冲压发动机性能模拟及验证[J]. 航空动力学报, 2013, 28(11): 2562-2566.
[14]莫然, 刘佩进, 刘洋, 等. 涡轮增压固体冲压发动机热力循环分析[J]. 固体火箭技术, 2011, 34(5): 598-602.
[15]潘宏亮, 周鹏. 空气涡轮液体火箭发动机建模与仿真研究[J].西北工业大学学报, 2009, 27(4): 492-498.
[16]潘宏亮, 林彬彬, 刘洋. 加力式空气涡轮火箭发动机特性研究[J]. 固体火箭技术, 2010, 33(6): 650-655.
[17]沈维道, 蒋智敏, 童钧耕. 工程热力学[M]. 北京: 高等教育出版社, 2001: 268-290.
[18]廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005: 122-134.
相似文献/References:
[1]张留欢,逯婉若.空气涡轮火箭发动机风车状态数值仿真研究[J].火箭推进,2015,41(06):16.
ZHANG Liuhuan,LU Wanruo.Numerical simulation of air turbo rocket
engine at windmilling state[J].Journal of Rocket Propulsion,2015,41(04):16.
[2]郭海波,肖 洪,南向谊,等.复合预冷吸气式火箭发动机热力循环分析[J].火箭推进,2013,39(03):15.
GUO Hai-bo,XIAO Hong,NAN Xiang-yi,et al.Analysis on thermodynamic cycle characteristics of synergistic air-breathing rocket engine[J].Journal of Rocket Propulsion,2013,39(04):15.
[3]李文龙,李 平,郭海波.空气涡轮火箭发动机掺混燃烧研究进展[J].火箭推进,2011,37(06):14.
LI Wen-long,LI Ping,GUO Hai-bo.Research progresses on turbulent mixing and combustion for air-turbo-rocket engine[J].Journal of Rocket Propulsion,2011,37(04):14.
[4]南向谊,王拴虎,李平.空气涡轮火箭发动机研究的进展及展望[J].火箭推进,2008,34(06):31.
Nan Xiangyi,Wang Shuanhu,Li Ping.lnvestlgatlon on status and prospect Ot alr turblne rocket[J].Journal of Rocket Propulsion,2008,34(04):31.
[5]严俊峰,张蒙正,路媛媛.基于分层燃烧的RBCC发动机热力循环浅析[J].火箭推进,2017,43(04):29.
YAN Junfeng,ZHANG Mengzheng,LU Yuanyuan.Brief analysis on thermodynamic cycle of
RBCC engine based on stratified combustion[J].Journal of Rocket Propulsion,2017,43(04):29.
备注/Memo
收稿日期:2014-09-17;修回日期:2014-11-01 基金项目:国家863项目(2010AA702308) 作者简介:李文龙(1987—),男,博士生,研究领域为吸气式组合推进技术