航天推进技术研究院主办
TANG Hu,BI Qincheng.Experimental study of cavitation in venturi[J].Journal of Rocket Propulsion,2015,41(05):54-60.
文丘里管汽蚀实验研究
- Title:
- Experimental study of cavitation in venturi
- Keywords:
- venturicavitationexperimental study
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 设计了4种不同喉部尺寸的文丘里管,各文丘里管进行了不同入口压力、相同出口压力下的实验,对其中1种进行了不同温度下的实验,结果表明:随着入口压力的提高,文丘里管的流量系数呈缓慢下降趋势;水温达到某一值时,流量系数出现明显减小;在相同入口、出口压力下,喉部直径越大,汽蚀区越明显;入口压力越大,汽蚀区越明显;对水在一定温度范围内加温,汽蚀区没有明显变化;此外,实验中文丘里管汽蚀区呈现周期性变化。最后对其中1种文丘里管进行了数值模拟,试验中汽蚀区长度与计算值基本一致。
- Abstract:
- Four venturi tubes with different throat diameter were designed. Each venturi was tested at different inlet pressure and same outlet pressure. Heating experiment for a selected venturi was carried out at different temperature. The experimental results show that the venturi flow coefficient has a trend of slow decline with the increase of inlet pressure; the flow coefficient decreases quickly when water temperature reached a certain value; at same inlet pressure and outlet pressure, the larger the throat diameter is, the greater the cavitation area becomes; the higher the inlet pressure is, the greater the cavitation area; when water is heated in certain temperature range, the cavitation area doesn't vary remarkably. In addition, the cavitation area of venturi presented periodic variation during the experiment. The numerical simulation for flow field of a selected venturi was carried out, and the results were compared with those of the experiment. The results show that
参考文献/References:
[1]SAYYAADI H. Assessment of tandem Venturi on enhan- cement of cavitational chemical reaction[J]. Journal of Fluids Engineering, Transactions of the ASME, 2009, 131(1): 0113011-0113017.
[2]FASIH H F, GHASSEMI H. Experimental evaluation of cavitating venturi as a passive flow controller in different sizes[C]// ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. [S.l.]: ASME, 2010, 3: 417-423.
[3]ARDIANSYAH T, ASABA M, MIURA K, et al. Charact- eristics of cavitation and erosion phenomena in sodium flow[C]// Proceedings of International Conference on Nuclear Engineering. [S.l.]: ICONE, 2010: 573-579.
[4]VABRE A, GMAR M, LAZARO D, et al. Synchrotron ultra-fast X-ray imaging of a cavitating flow in a Venturi profile[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607(1): 215- 217.
[5]COUTIER D O, VABRE A, HOCEVAR M, et al. Investigation of velocity in cavitating flow by ultra fast X-ray imaging[C]// 13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. [S.l.]: [s.n.], 2010: 59-65.
[6]SAYYAADI H. Instability of the cavitating flow in a venturi reactor[J]. Fluid Dynamics Research. 2010, 42(5): 111-118.
[7]ARDIANSYAH T, TAKAHASHI M, YOSHIZAWA Y, et al. Numerical simulation of cavitation for comparison of sodium and water flows[C]// Proceedings of International Conference on Nuclear Engineering. [S.l.]: ICONE, 2010, 4: 615-622.
[8]张小斌, 曹潇丽, 邱利民, 等. 液氧文氏管汽蚀特性计算流体力学研究[J]. 化工学报, 2009, 60(7): 1638-1643.
[9]史刚, 梁国柱. 以N2O为工质的汽蚀文氏管流场仿真[J].航空动力学报, 2012, 27(2) : 465-471.
[10]DITTAKAVI N, CHUNEKAR A, FRANKEL S. Large eddy simulation of turbulent-cavitation interactions in a venturi nozzle[J]. Journal of Fluids Engineering, Transactions of the ASME, 2010, 132(12): 1-11.
[11]NOURI N M, MIRSAEEDI S M H, MOGHIMI M. Large eddy simulation of natural cavitating flows in Venturi-type sections[J]. Journal of Mechanical Engineering Science, 2011, 225(2): 369-381.
[12]DE GIORGI M G, FICARELLA A, RODIO M G. Cavitation modeling in cryogenic fluids for liquid rocket engine applications[C]// 38th AIAA Fluid Dynamics Conference and Exhibit. [S.l.]: AIAA, 2008: 45-50.
[13]GONCALVES E, CHAMPAGNAC M, PATELLA R F. Comparison of numerical solvers for cavitating flows [J]. International Journal of Computational Fluid Dynamics, 2010, 24(6): 201-216.
[14]谭建国, 刘景华, 王振国. 一种适用于系统仿真的文氏管动态模型[J]. 系统仿真学报, 2010, 22(12): 2788- 2794.
[15]BASHIE T A,SONI A G, MAHULKAR A V, et al. The CFD driven optimisation of a modified venturi for cavitational activity[J]. Canadian Journal of Chemical Engineering. 2011, 89(6): 1366-1375.
[16]GONCALVES E, DECAIX J, PATELLA R F. Unsteady simulation of cavitating flows in Venturi[J]. Journal of Hydrodynamics, 2010, 22(5):711-716.
[17]KIM H J, NGUYEN D X, BAE J H. The performance of the sludge pretreatment system with venturi tubes[J]. Water Science and Technology, 2008, 57(1): 131-137.
[18]SAHARAN V K, BADVE M P, PANDIT A B. Degradation of reactive red 120 dye using hydrodynamic cavitation[J]. Chemical Engineering Journal, 2011, 178: 100-107.
[19]SAINTE B R, MORISON K R. Enzymatic hydrolysis of canola oil with hydrodynamic cavitation[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(10): 1101-1106.
[20]MISHRA K P, GOGATE P R. Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives[J]. Separation and Purification Technology, 2010, 75(3): 385-391.
[21]SAHARAN V K, RIZWANI M A, MALANI A A, et al. Effect of geometry of hydrodynamically cavitating device on degradation of orange-G[J]. Ultrasonics Sonochemistry, 2013, 20(1): 345-353.
备注/Memo
收稿日期:2015-01-31;修回日期:2015-03-26 基金项目:中国航天科技集团公司支撑项目(2011JY09) 作者简介:唐虎(1977—),男,高级工程师,研究领域为液体火箭发动机系统设计