航天推进技术研究院主办
WANG Yibai,LU Xingyu,LI Bo,et al.Test of wall pressure during transition of flow separation modes in nozzle[J].Journal of Rocket Propulsion,2015,41(05):101-105.
喷管分离流动模态转换过程壁压测量试验
- Title:
- Test of wall pressure during transition of flow separation modes in nozzle
- Keywords:
- rocket engine nozzle; flow separation; TOP nozzle; wall pressure; experiment
- 分类号:
- V431-34
- 文献标志码:
- A
- 摘要:
- 为了研究推力最大抛物线(TOP)喷管在不同工作压强下流动分离过程中分离模态间的转换过程,确定其压强分布特点和模态转变发生的临界压强比,对一个TOP喷管进行了多个压比下的冷流试验。通过采集不同位置上的壁面压强,初步确定开机阶段自由激波分离向受限激波分离模态转换发生的喷管压强比(NPR,喷管局部压强与环境压强之比)在17.61~18.49之间,捕捉到了转变过程中的压强不对称现象,并且发现在受限分离激波下游的局部壁面压强高于环境压强。为了获得更多流场细节,用雷诺平均(RANS)方法对实验模型进行了数值模拟,与试验结果最大误差不超过5%,证实了试验中获得的压强分布确实对应了不同的分离模态。
- Abstract:
- Cold flow testing experiments for wall pressure of a thrust optimized parabolic (TOP) nozzle were conducted at different nozzle pressure ratios to study the transition process at different flow separation modes in TOP nozzles, and to ensure the characteristics of the pressure distribution and the critical pressure ratio of separation mode transition. The wall pressure of different positions was measured. The result shows that the transition from free shockwave separation to restricted shockwave separation happens in the nozzle pressure ratio (NPR, ratio of local nozzle pressure to ambient pressure) range of 17.61~18.49. The asymmetrical pressure distribution phenomenon during the transition was captured. It was also found that the local wall pressure intensity at downstream of the restricted proves that the measured pressure distributions is corresponding to different flow separation modes.
参考文献/References:
[1] STLUND J. Flow processes in rocket engine nozzles with focus on flow separation and side-loads[D]. Stockholm, Sweden: Royal Institute of Technology, 2002.
[2] NAVE L H, COFFEY G A. Sea level side loads in high-area-ratio rocket engines[C]//9th AIAA/SAE Pro- pulsion Conference. New York: AIAA, 1973, 11: 1-66.
[3] BAARS W J, TINNEY C E, RUF J H, et al. Wall pressure unsteadiness and side loads in overexpanded rocket nozzles[J]. AIAA Journal, 2012, 50(1): 61-73.
[4] WATANABE Y, SAKAZUME N, TSUBOI M. LE-7A engine nozzle problems during the transient operations[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Indianapolis, Indiana: AIAA, 2002(July): 1-6.
[5] TERHARDT M, HAGEMANN G, FEY M. Flow separation and side-load behavior of the Vulcain engine[C]//35th AIAA/ASME/SAE/ASEE Joint ProptiMon Conference & Exhibit. Los Angeles, California: AIAA, 1999(C): 1-12.
[6]李波. 液体火箭发动机喷管分离流动的数值仿真及实验研究[D]. 北京: 北京航空航天大学宇航学院, 2013.
[7]胡海峰, 鲍福廷, 蔡强, 等. 大膨胀比火箭发动机喷管流动分离与气动弹性分析[J]. 固体火箭技术, 2011, 34(6):711-716.
[8] RUF J H, MCDANIELS D M, BROWN A M. Details of side load test data and analysis for a truncated ideal contour nozzle and a parabolic contour nozzle[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville, TN: AIAA, 2010: 111-118.
相似文献/References:
[1]周一鹏,朱定强.液体火箭发动机喷管壁面辐射热流的数值计算[J].火箭推进,2015,41(03):27.
ZHOU Yi-peng,ZHU Ding-qiang.Numerical calculation of radiative heat flux
on nozzle wall of liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(05):27.
备注/Memo
收稿日期:2015-01-08;修回日期:2015-03-10 作者简介:王一白(1976—),男,博士,研究领域为航空宇航推进理论与工程