航天推进技术研究院主办
JIANG Kai,HE Yunqin,LIANG Guozhu.Computation and analysis of thermodynamic parameters of shock wave and detonation wave in H2/O2 rocket engine[J].Journal of Rocket Propulsion,2017,43(06):14-25.
氢氧发动机中激波与爆轰波热力参数计算分析
- Title:
- Computation and analysis of thermodynamic parameters of shock wave and detonation wave in H2/O2 rocket engine
- 文章编号:
- 1672-9374(2017)06-0014-12
- Keywords:
- hydrogen-oxygen rocket engine; shock wave; detonation wave; thermodynamic parameter; pressure ratio
- 分类号:
- V434.1-34
- 文献标志码:
- A
- 摘要:
- 大扩张比氢氧发动机在地面试车时喷管中可能会出现激波,而在起动时刻燃烧室或燃气发生器中则很容易产生爆轰波,其对发动机的结构与工作状态会产生较大的影响。为准确地分析激波与爆轰波对氢氧发动机的影响,从热力参数层面进行计算分析,所有的计算都考虑热化学反应的影响。首先,在传统一维管流模型基础上引入化学平衡模型来计算和分析推进剂混合比和燃烧室压力对喷管扩张段中激波位置及热力参数影响的一般规律; 然后,采用基于热化学平衡模型的C-J爆轰理论,计算和分析推进剂混合比、初温及初压对爆轰波的影响规律。计算分析表明:喷管扩张段中的激波位置与燃烧室压力呈线性关系,激波处的温度比相对于不考虑热化学反应时要低28%~38%,而压力比无明显区别,压力比与温度比在化学当量混合比时最小; 爆轰波强度随着初压的升高、初温的降低而增强,在化学当量混合比时最强,初温30 K,初压1 MPa时爆轰压力最高可达220 MPa,温度可达4 500 K,波速超过3 000 m/s。得到的这两种波的规律和特点可以为发动机工程设计人员提供一定的参考。
- Abstract:
- In order to analyze the effects of shock wave and detonation wave on hydrogen oxygen engine more accurately, the thermodynamic parameters are calculated and analyzed, in which the influence of thermo-chemical reactions are fully considered. Dased on the traditional one-dimensional pipe flow model, a chemical equilibrium model is introduced to calculate and analyze the general law of the influence of propellant mixture ratio and chamber pressure on the shock position and thermal parameters, and then the C-J detonation theory based on thermo-chemical equilibrium is used to calculate and analyze the effects of propellant's mixing ratio, initial temperature and initial pressure on detonation wave. The results show that the shock positions in the nozzle expansion section are linear to the pressure in the combustion chamber, and the temperature ratio at the shock wave is about 28%~38% lower than that without thermo-chemical reaction, where the pressure ratio has no significant difference. The temperature ratio and the pressure ratio are minimum at the stoichiometric mixture ratio. The results also show that the detonation wave intensity enhances with the increase of initial pressure and the decrease of initial temperature. And it becomes strongest at the stoichiometric mixture ratio. The detonation pressure and temperature can be up to 220 MPa and 4 500 K respectively, and the wave velocity exceeds 3000 m/s when the initial temperature is 30 K and the initial pressure is 1 MPa. The rules and characteristics of these two kinds of waves in rocket engines can provide a certain conference for engine engineers.
参考文献/References:
[1] 泽尔道维奇. 激波和高温流体动力学现象物理学[M]. 张树材, 译. 北京:科学出版社, 1980.
[2] MURMAN E T. Analysis of embedded shock waves calculated by relaxation methods [J]. AIAA journal, 2015, 12(5): 735-736.
[3] 申义庆, 高智, 杨国伟. NS方程激波计算的摄动有限差分方法[J]. 空气动力学学报, 2006, 24(3): 335-339.
[4] FETEANU R, GREATRIX D. Traveling shock wave interaction with rocket motor head end [C]// AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. [S.l.]: AIAA, 2013: 123-129.
[5] 路媛媛, 张蒙正, 严俊峰. 火箭推力室喷管内激波对RBCC性能影响分析[J]. 火箭推进, 2013, 39(5): 46-50.
LU Yuanyuan, ZHANG Mengzheng, YAN Junfeng. Influences of shock wave in rocket nozzle on RBCC performance [J]. Journal of rocket propulsion, 2013, 39(5): 46-50.
[6] 谢晓亮. 阿里安火箭5次发射失败简况[J]. 中国航天, 1990(6): 25.
[7] 朱森元. НМ-7氢氧发动机[J]. 导弹与宇航, 1978(3): 88-108.
[8] CHAPMAN D L, CHAPMAN D L. On the rate of explosion in gases [J]. Philosophical magazine, 2009, 47(284): 90-104.
[9] JOUGUST E. On the propagation of chemical reaction in gases [J]. J de mathematiques pures et appliquees, 1905(l): 347-425.
[10] ZELDOVICH Y B. On the theory of the propagation of detonation in gaseous systems [J]. Technical report archive & image library, 1950, 10(1261): 542-568.
[11] VON NEUMANN J. Theory of detonation wave [M]. New York: Pergamon Press, 1963: 1903-1905.
[12] DORING W. On the detonation process in gas [J]. Annal phys, 1943(43): 421-436.
[13] TSUBOI N, ETO K, HAYASHI A K. Detailed structure of spinning detonation in a circular tube [J]. Combustion & flame, 2007, 149(1): 144-161.
[14] NAGAO T, ASAHARA M, HAYASHI A K, et al. Numerical analysis of spinning detonation dependency on initial pressure using AUSMDV scheme [C]// AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. [S.l.]: [s.n.], 2015: 717-727.
[15] 严传俊, 范玮, 黄希桥,等. 新概念脉冲爆震发动机的探索性研究[J]. 自然科学进展, 2002, 12(10): 1021-1025.
[16] YANChuanjun, FAN Wei, HUANG Xiqiao, et al. Exploratory study on new pulse detonation engines [J]. Progress in natural science: materials international, 2003, 13(2): 88-94.
[17] 张博. 气相爆轰动力学[M].北京: 科学出版社, 2012.
[18] 郭红杰, 梁国柱, 马彬,等. 爆震波点火器在氢氧塞式喷管的工程应用[J]. 火箭推进, 2006, 32(6): 16-19.
GUO Hongjie, LIANG Guozhu, MA Bin, et al. Engineering application of detonation wave igniter on hydrogen-oxygen aerospike nozzle engine [J]. Journal of rocket propulsion, 2006, 32(6): 16-19.
[19] 郭红杰, 梁国柱. 爆震波点火器管路传播过程数值模拟[J]. 推进技术, 2006, 27(1): 83-87.
[20] TSUBOI1Nobuyuki, FUJIMOTO Keisuke, MUTO Daiki. Three-dimensional numerical simulation on dispersion process of unsteady high pressure hydrogen jet flow: AIAA 2017-1232 [R]. USA: AIAA, 2017.
[21] CAI Xiaodong, LIANG Jianhan, DEITERDING Ralf, et al. Adaptive simulations of cavity-based detonation in supersonic hydrogen oxygen mixture [J]. International journal of hydrogen energy, 2016, 41: 6917-6928.
[22] COYE B, WATTS J M. Cryogenic, multiphase, hydrogen-oxygen detonations: AIAA 2005-1462 [R]. USA: AIAA, 2005.
[23] GORDON S, MCBRIDE B, ZELEZNIKF J. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties: NASA 85-16663 [R]. USA: NASA, 1985.
[24] REYNOLDS W C. The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Version 3 [R]. [S.l.]: [s.n.], 1986.
[25] 李宜敏,张中钦,张远军. 固体火箭发动机原理[M]. 北京: 北京航空航天大学出版社, 1991.
[26] ZELEZNIKF J.. Calculation of detonation properties and effect of independent parameters on gaseous detonations [J]. ARS Journal, 1962, 32: 606-615
[27] GORDON S, MCBRIDE B. J. Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and chapman-jouguet detonations NASA SP-273 [R]. USA: NASA, 1971.
[28] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社, 2005.
相似文献/References:
[1]夏 伟,陈世哲,王占林,等.氢氧发动机地面摇摆试验技术研究[J].火箭推进,2015,41(01):105.
XIA Wei,CHEN Shi-zhe,WANG Zhan-lin,et al.Research on ground test technology for swing
status of LOX/LH2 rocket engine[J].Journal of Rocket Propulsion,2015,41(06):105.
[2]郑大勇,陶瑞峰,张 玺,等.大推力氢氧发动机关键技术及解决途径[J].火箭推进,2014,40(02):22.
ZHENG Da-yong,TAO Rui-feng,ZHANG Xi,et al.Study on key technology for large thrust
LOX/LH2 rocket engine[J].Journal of Rocket Propulsion,2014,40(06):22.
[3]王朝晖,孔维鹏,王 仙,等.富氢燃气与液氧爆轰及补燃特性试验研究[J].火箭推进,2019,45(06):10.
WANG Zhaohui,KONG Weipeng,WANG Xian,et al.Experimental study on the detonation and spontaneous combustion characteristics of hydrogen-rich gas and liquid oxygen[J].Journal of Rocket Propulsion,2019,45(06):10.
[4]郭 敬,张 佳,李 茂,等.高模试验补氧燃烧过程仿真[J].火箭推进,2019,45(06):17.
GUO Jing,ZHANG Jia,LI Mao,et al.Simulation of oxygenating combustion process in altitude simulating test for large thrust hydrogen/oxygen rocket engine[J].Journal of Rocket Propulsion,2019,45(06):17.
[5]柳恺骋,刘曌俞,王新军,等.考虑整机变形的氢氧发动机管路结构静强度分析[J].火箭推进,2024,50(03):83.[doi:10.3969/j.issn.1672-9374.2024.03.009]
LIU Kaicheng,LIU Zhaoyu,WANG Xinjun,et al.Static structural analysis of pipeline structures of hydrogen/oxygen rocket engine considering structural integral deformation[J].Journal of Rocket Propulsion,2024,50(06):83.[doi:10.3969/j.issn.1672-9374.2024.03.009]
备注/Memo
收稿日期:2017-09-30
作者简介: 姜凯(1993—),男,硕士,研究领域为氢氧火箭发动机燃烧过程数值仿真