航天推进技术研究院主办
LI Yu,ZHU Donghua,XU Kaifu,et al.Design optimization research on impulsive pressure level turbine with partial admission[J].Journal of Rocket Propulsion,2018,44(04):16-22.
局部进气冲击式压力级涡轮设计优化研究
- Title:
- Design optimization research on impulsive pressure level turbine with partial admission
- 文章编号:
- 1672-9374(2018)04-0016-07
- Keywords:
- partial admission; impulsive pressure-level; turbine; optimization
- 分类号:
- V434.21-34
- 文献标志码:
- A
- 摘要:
- 依据液体火箭发动机涡轮泵原理,建立了两级局部进气冲击式压力级涡轮的设计方法。该方法可以根据涡轮进出口边界条件、转速和结构尺寸等参数,完成涡轮的一维设计,并输出叶型的几何数据和流动性能参数,再结合三维数值模拟进行验证。按照涡轮总体设计要求,完成了某小流量高压比涡轮的原始设计,根据三维数值模拟的结果,对原始设计的涡轮叶型进行了优化,涡轮效率提高了2%。在全周结构上进行了三维数值模拟验证,优化后的两级局部进气冲击式压力级涡轮满足涡轮总体设计要求。
- Abstract:
- A method for designing an impulsive pressure level turbine with two-stage partial admission was established based on the turbine-pump principle of the liquid rocket engine. The one dimensional design of the turbine can be completed according to the boundary condition of the air inlet and outlet, revolutions per minute, and the structure size of the turbine, and then the geometry data of the turbine blade profile and the flow parameter are exported. Finally three-dimensional numerical simulation is employed to validate the design result. The proto type of a turbine with low mass flow rate and high pressure ratio was designed in accordance with the total design desire of the turbine. On the base of the three-dimensional numerical simulation results, the turbine blade profiles of the original design were optimized. The efficiency of the turbine was increased by 2%. The three-dimensional numerical simulation of whole circumferential model was performed for the flow. The result shows that the optimized impulsive pressure level turbine with two-stage partial admission can satisfy the total design requirements of the turbine.
参考文献/References:
[1] 南向谊,王拴虎,李平.空气涡轮火箭发动机的进展及展望[J].火箭推进,2008,34(6):31-35.
NAN Xiangyi, WANG Shuanhu, LI Ping. Investigation on status and prospect of air turbine rocket [J]. Journal of rocket propulsion, 2008, 34(6): 31-35.
[2] 李平,柳长安,何国强,等.基于ATR动力的飞行器性能分析[J].弹箭与制导学报,2011,31(6):173-175.
[3] 严俊峰,逯婉若.冲击式涡轮内部流动数值研究[J].火箭推进,2009,35(1):32-35.
YAN Junfeng, LU Wanruo. Numerical analysis of inner flow field for an impulse turbine [J]. Journal of rocket propulsion, 2009, 35(1): 32-35.
[4] 李旭升,郑继坤,吴玉珍.某型超音速冲击式氧涡轮叶型气动优化[J].火箭推进,2014,40(5),44-49.
LI Xusheng, ZHENG Jikun, WU Yuzhen.Aerodynamic optimization for blade profile of a supersonic impulse oxygen turbine[J]. Journal of rocket propulsion, 2014, 40(5): 44-49.
[5] 奥夫相尼科夫,博罗夫斯基.液体火箭发动机涡轮泵装置原理与计算[M].任汉芬,夏得新,译.北京:中国航天工业总公司第十一研究所(京),1999.
[6] 张远君,王普光,刘竹莹,等.液体火箭发动涡轮泵设计[M].北京:北京航空航天大学出版社,1995.
[7] 朱宁昌.液体火箭发动机设计(下)[M].北京:中国宇航出版社,1994.
[8] 刘子亘,邹积国,于剑锋,等.某型汽轮机速度级流场气动性能的数值研究[J].汽轮机技术,2010,52(4),241-243,308.
[9] 蔡国飙,李家文,田爱梅,等.液体火箭发动机设计[M],北京:北京航空航天大学出版社,2001.
[10] 杨佃亮,李颖晨,丰镇平.超音速喷嘴叶栅造型设计及数值分析[J].工程热物理学报,2006,27(2),217-219.
[11] 蔡颐年.蒸汽轮机[M].西安:西安交通大学,2004.
备注/Memo
收稿日期:2016-02-14
基金项目: 国家863项目(2015AA7053026)
作者简介: 李 瑜(1982—),男,博士,研究领域为液体火箭发动机涡轮泵