航天推进技术研究院主办
DING Peng,CHEN Wei,et al.Calculation and risk analysis of liquid hydrogen leakage and diffusion in launching site[J].Journal of Rocket Propulsion,2018,44(04):78-84.
发射场液氢泄漏扩散计算及危险性分析
- Title:
- Calculation and risk analysis of liquid hydrogen leakage and diffusion in launching site
- 文章编号:
- 1672-9374(2018)04-0078-07
- 分类号:
- V553-34
- 文献标志码:
- A
- 摘要:
- 航天发射场液氢泄漏的计算分析是一个比较复杂的问题,它涉及到流体的传热、传质,泄漏过程中的质量守恒、能量守恒以及组分守恒等问题。通过简化的发射场储罐的液氢的泄漏扩散模型,着重分析了泄漏压力、泄漏口大小和位置对于泄漏过程的影响规律。通过模拟发现液氢的泄漏速度随着泄漏口压力增大而增大,但是当泄漏口流量系数不变时,泄漏速度与泄漏口的大小无关。完全气化距离和完全气化时间都与泄漏压力和泄漏口大小呈正相关。同时使用TNO多能法,结合相变计算公式,对案例进行变压力及变泄漏口直径下的危害评估。结果发现,当泄漏出的蒸气云的体积小于受限空间体积时,泄漏口压力越大,泄漏口越大,液氢的泄漏量也越大,从而蒸气云爆炸的危害越大。
- Abstract:
- Liquid hydrogen leakage from storage tank in the launching site is a complicated problem, which involves the issues of mass transfer and heat transfer of liquid, energy conservation, mass conservation and component conservation in the leakage process. The effect of the leakage pressure, leakage hole size and leakage hole location on the leakage process is analyzed emphatically in this paper by means of the simplified leakage diffusion model of liquid hydrogen in the storage tank. According to the simulation, it was found that the leakage velocity increases with increase of the pressure at the leakage hole, but which is not related to the leakage hole size when the flow coefficient at the leakage hole remain constant. Complete evaporation distance and complete evaporate time are positively correlated with leakage pressure and leakage hole size. The multi energy method TNO, associated with phase changing formular,is employed to performed the risk assessment of hydrogen explosion. It is found that the higher the leakage pressure and the larger the leakage hole diameter are, the more amount of hydrogen leakage becomes, which may cause more significant hazard from the vapor cloud explosion, when the leaked vapor cloud volume is smaller than restrained volume.
参考文献/References:
[1] 谢福寿,雷刚,王磊,等.过冷低温推进剂的性能优势及其应用前景[J].西安交通大学学报,2015,49(5):16-23.
[2] 李渊,陈景鹏,崔村燕,等.液氢泄漏扩散规律研究现状[J].装备学院学报,2014(4):75-78.
[3] WITCOFSKI R D. Dispersion of flammable vapor clouds resulting from large spills of liquid hydrogen [C]// Proceedings of Intersoc Energy Conversation Eng. Conference. Technical Memorandom, United States, 1981:284-298.
[4] ANGAL R, DEWAN A, SUBRAMAN K A. Computational study of turbulent hydrogen dispersion hazards in a closed space [J]. IUP journal of mechanical engineering, 2012, 5(2): 28-42.
[5] AGRANAT V, CHENG Z, TCHOUVELEV A. CFD modeling of hydrogen releases and dispersion in hydrogen energy station [C]// Proceedings of the 15th World Hydrogen Energy Conference. [S.l.]:[s.n.], 2004: 110-117.
[6] VENETSANOS A G, HULD T, ADAMS P, et al. Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment [J]. Journal of hazardous materials, 2003, 105(1/3): 1-25.
[7] 王青松,孙金华,姚礼殷.液氢泄漏主要灾害形式分析[J].武汉理工大学学报, 2006,28(z1):279-284.
[8] 吴光中,李久龙,高婉丽,等.大流量氢气的排放与扩散研究[J].导弹与航天运载技术,2010(5):51-55.
[9] 李茂,孙万民,刘瑞敏.低温氢气排放过程数值模拟[J].火箭推进,2013,39(4):74-79.
LI Mao, SUN Wanmin, LIU Ruimin. Numerical simulation of cryogenic gaseous hydrogen emission [J]. Journal of rocket propulsion, 2013, 39(4):74-79.
[10] 薛薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(4):61-66.
XUE wei, CAI Zhenyu, CAO Hongjuan, et al. Mass calculation of key assembly units in LH2/ LOX rocket engine based on visual interface [J]. Journal of rocket propulsion, 2015, 41(4): 61-66.
[11] 乔野,聂万胜,丰松江,等.液氢/液氧火箭发动机尾焰流场特性仿真研究[J].火箭推进,2015,41(5):43-48.
QIAO Ye, NIE Wansheng, FENG Songjiang,et al. Simulation research on fluid field characteristics of LH2/LOX rocket engine plume [J]. Journal of rocket propulsion, 2015, 41(5): 43-48.
[12] 姜冬玲,杨莹.液氧温度对某液氧液氢发动机性能影响研究[J].火箭推进,2014,40(2):54-58.
JIIANG Dongling, YANG Ying. Influence of LOX temperature on LOX/LH2 rocket engine performance [J]. Journal of rocket propulsion, 2014, 40(2): 54-58.
[13] DEWAN A, ANGAL R, SUBRAMANIAN K A. Computational study of turbulent hydrogen dispersion hazards in a closed space [J]. Social science electronic publishing, 2012, 345: 123-128.
[14] CROWL D A, LOUVAR J F. Chemical process safety: fundamentals with applications [M]. [S.l.]: Pearson Education, 2001.
[15] TURBINE N G, STANDARDS V, DIESEL H. Standard specification for diesel fuel oils: ASTM D975-2015b [R]. USA: ASTM, 2015.
[16] 潘旭海,蒋军成.事故泄漏源模型研究与分析[J].南京工业大学学报(自科版),2002,24(1):105-110.
[17] Hidenori, Matsui.氢气爆炸特性研究[J].中国安全生产科学技术,2005,1(6):3-9.
[18] 金军.蒸气云爆炸事故的风险评估方法[J].消防技术与产品信息,2014(12):25-27.
[19] 孙恩吉,李红果,王敏.基于Realizable 型的氨气泄漏数值模拟研究[J].中国安全生产科学技术,2017,13(2):114-118.
[20] 曾岳梅.TNO多能法在某LNG罐区蒸气云爆炸的应用[J].石油化工安全环保技术,2013,29(6):7-9.
备注/Memo
收稿日期:2017-08-03
基金项目: 航天低温推进剂技术国家重点实验室基金课题(SKLTSCP1513)
作者简介: 丁 鹏(1995—)男,工程师,研究领域为液氢的爆燃及危害分析