航天推进技术研究院主办
MO Jianwei,JING Zhuoyin,LI Tong,et al.Numerical simulation and analysis of thermal conductivity error for short type thermocouple[J].Journal of Rocket Propulsion,2018,44(06):81-85.
短型热电偶导热误差影响因素数值仿真分析
- Title:
- Numerical simulation and analysis of thermal conductivity error for short type thermocouple
- 文章编号:
- 1672-9374(2018)06-0081-05
- 关键词:
- 短型热电偶温度传感器; 数值仿真; 导热误差修正
- 分类号:
- V430-34
- 文献标志码:
- A
- 摘要:
- 在航空航天发动机技术的研究过程中,通常需要准确测量高温、高速环境下的气流温度以衡量发动机的性能,由于传感器强度等因素的限制,温度传感器插入高温气流深度较小,造成很大的导热误差,影响发动机工作特性的评判。对此专门开展了短型热电偶温度传感器导热误差的研究,建立相应的短型热电偶导热误差仿真模型,并进一步验证了仿真模型的准确性。在此基础上通过仿真手段研究不同热电偶插入深度、不同来流马赫数、不同来流总温和不同基底温度对导热误差修正系数的影响规律,并建立了热电偶导热误差修正系数的响应面模型。仿真研究结果可以为短型热电偶导热误差的抑制提供思路并为热电偶使用过程中测量数据的修正提供支持。
- Abstract:
- In the research of aerospace engine technology, accurate measurement of airflow temperature in high temperature and high speed environment is usually required to evaluate the performance of the engine.In addition, depth of the thermocouples insertion at high temperature airflow is very short due to the restriction of geometrical space and sensor strength, which causes large thermal conductivity error and affects the judgment of engine working characteristics.In this paper, research on thermal conductivity error of short type thermocouple is carried out.A simulation model of thermal conductivity error for short thermocouple is established.And the accuracy of the simulation model is verified further.Through numerical simulation, the influence of thermocouple insertion depth, Mach number of incoming flow, total temperature of incoming flow and substrate temperature on the correction coefficient of heat conduction error was studied.The response surface model of thermal conductivity error correction coefficient was established.The simulation results can provide an idea for the suppression of thermal conductivity error of short thermocouple and provide a support for the measured data correction in the application process of thermocouple.
参考文献/References:
[1] 李海燕,赵俭.温度传感器动态校准研究[J].计测技术,2008(1):1-3, 6.
[2] SCADRON M D, WARSHAWSKY I.Experimental determination of time constants andnusselt numbers for bare-wire thermocouples in high-velocity air streams and analytic approximation of conduction and radiation errors: NACA TN 2599 [R].USA: NACA, 1952.
[3] BENEDICT R P.Fundamentals of temperature, pressure and flow measurement[J].Wiley, 1984, 35(3): 1917-1921.
[4] BONTRAGER P J.Development of thermocouple-type total temperature probes in the hypersonic flow regime: AEDC-TR-69-25(AD681489)[R].USA: AEDC,1969.
[5] 李建军.镍铬-镍硅热电偶特性分析与应用研究[J].火箭推理,2010,36(5):63-68.
LI J J.Application and characteristic analysis of nickel-chromium and nickel-silicon thermocouple[J].Journal of rocket propalsion, 2010,36(5):63-68.
[6] 蔡静,杨永军,廖理,等.导热误差对温度测量的影响[J].北京航空航天大学学报,2008,34(11):1353-1355, 1363.
[7] 宋文治,杨永军,赵俭.基于正交原理与仿真的单屏蔽温度传感器误差影响因素研究[J].计测技术,2014,34(6):14-17.
[8] 常立民.热电偶高温测量误差分析[J].甘肃科技,2003,19(12):25-26.
[9] 杨庆涛,白菡尘,刘济春.变状态测量中薄壁量热计后壁导热损失修正[J].航空动力学报,2015,30(2):349-355.
[10] 苏金友,袁世辉,赵涌,等.某改型温度测量探针结构气动特性试验与数值分析[J].航空发动机,2015,41(1):80-84.
[11] GLAWE G E, JOHNSON R C.Experimental study of heat transfer to small cylinders in a subsonic, high-temperature gas stream: NACA TN 3934 [R].USA: NACA, 1957.
[12] 袁若浩.基于ANSYS热分析炉均温场模拟及优化[D].杭州:中国计量学院,2015.
[13] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
[14] 韦会祥,李鲁生.铠装热电偶的导热误差[J].核动力工程,1989,10(4):43-46.
相似文献/References:
[1]俞南嘉,鲍启林,张 洋,等.针栓式液氧/煤油发动机燃烧数值仿真[J].火箭推进,2018,44(04):23.
YU Nanjia,BAO Qilin,ZHANG Yang,et al.Numerical simulation of combustion for LOX/kerosene engine with pintle injector[J].Journal of Rocket Propulsion,2018,44(06):23.
[2]闫 波,张会强,王 兵.小推力液体火箭发动机在轨热分析[J].火箭推进,2019,45(03):15.
YAN Bo,ZHANG Huiqiang,WANG Bing.Thermal analysis of low-thrust liquid rocket engine on orbit[J].Journal of Rocket Propulsion,2019,45(06):15.
[3]王宏亮,史 超,赵 曙,等.火星大气来流模拟装置CFD仿真与试验[J].火箭推进,2020,46(01):89.
WANG Hongliang,SHI Chao,ZHAO Shu,et al.CFD and experimental studied on the Mars atmosphere incoming flow equipment[J].Journal of Rocket Propulsion,2020,46(06):89.
[4]赵 娅,袁军娅,任 翔.微喷管中稀薄流动时热力学非平衡现象研究[J].火箭推进,2020,46(03):19.
ZHAO Ya,YUAN Junya,REN Xiang.Study on thermodynamic non-equilibrium phenomenon of rarefied flow in micro-nozzle[J].Journal of Rocket Propulsion,2020,46(06):19.
[5]王 勇,巨 乐,杨伟东,等.150 N气氧/煤油发动机涡流冷却技术试验[J].火箭推进,2020,46(03):26.
WANG Yong,JU Le,YANG Weidong,et al.Experimental investigation on vortex-cooled technology of 150 N GO2/kerosene engine[J].Journal of Rocket Propulsion,2020,46(06):26.
[6]陈 文,邢理想,徐浩海,等.深度节流补燃循环发动机系统稳定性研究[J].火箭推进,2020,46(03):41.
CHEN Wen,XING Lixiang,XU Haohai,et al.Study on system stability of deep-throttling staged combustion cycled engine[J].Journal of Rocket Propulsion,2020,46(06):41.
[7]张 萌,孙 冰.液氧/甲烷发动机推力室肋强化换热技术数值研究[J].火箭推进,2021,47(02):19.
ZHANG Meng,SUN Bing.Numerical study on enhanced heat transfer technology ofLOX/CH4engine chamber with ribs[J].Journal of Rocket Propulsion,2021,47(06):19.
[8]孔维鹏,谢恒.25t级氢氧膨胀循环发动机推力室氧腔流动仿真[J].火箭推进,2022,48(01):30.
KONG Weipeng,XIE Heng.Flow simulation of oxygen dome in thrust chamber of 25-ton LOX/LH2 expansion cycle rocket engine[J].Journal of Rocket Propulsion,2022,48(06):30.
[9]党枭睿,许开富,金路,等.带凹槽结构的涡轮泵平衡活塞工作特性分析[J].火箭推进,2022,48(01):45.
DANG Xiaorui,XU Kaifu,JIN Lu,et al.Analysis on working characteristics of balanced piston with groove structure for turbopump[J].Journal of Rocket Propulsion,2022,48(06):45.
[10]刘阳旻,田原,马志瑜,等.常用钟型喷管造型、性能及低空使用边界分析[J].火箭推进,2023,49(05):81.
LIU Yangmin,TIAN Yuan,MA Zhiyu,et al.Analysis of design, performance and low-attitude operating boundary of common bell nozzle[J].Journal of Rocket Propulsion,2023,49(06):81.
备注/Memo
收稿日期:2016-10-07; 修回日期:2018-06-11 基金项目: 国防科工局技术基础科研项目(JSJC2013203A001) 作者简介: 莫建伟(1986—),男,博士,研究领域为气动力学