航天推进技术研究院主办
WANG Haoming,CHENG Cheng,LI Xiaofang,et al.Development and performance study of electrically driven pump system for liquid rocket engine[J].Journal of Rocket Propulsion,2019,45(05):1-7.
液体火箭发动机电动泵系统发展及性能研究
- Title:
- Development and performance study of electrically driven pump system for liquid rocket engine
- 文章编号:
- 1672-9374(2019)05-0001-07
- Keywords:
- liquid rocket engine; electrically driven pump; high-speed motor; lithium battery; mass sensitivity
- 分类号:
- V434.2
- 文献标志码:
- A
- 摘要:
- 介绍了液体火箭发动机电动泵增压系统的发展历程以及电动泵系统核心组件的特点,提出了考虑离心泵效率及电源系统放电特性变化的电动泵系统质量模型。电动泵系统中质量占比最大的组件为电机和电源系统,质量敏感性分析表明离心泵效率对系统质量的影响最大。通过对比不同推力、室压和工作时间下的电动泵系统与涡轮泵系统(燃气发生器循环)质量发现,电动泵系统在不同发动机推力下对应室压极限,低于该极限值时电动泵系统存在质量优势,且该室压极限值随着发动机推力增大而提高。最后,针对电动泵系统进一步减重增效,梳理了各组件涉及的主要关键技术,并提出了发展建议。
- Abstract:
- In this paper, the development history of electrically driven pump feed system for liquid rocket engine is presented and the characteristics of core components are explained in detail.A mass model for electrically driven pump system considering the centrifugal pump efficiency and the discharge characteristics of Li-ion battery is proposed.The motor and battery system have the largest mass proportion of the whole system.Sensitivity analysis shows that the pump efficiency has the greatest impact on the system mass.By comparing the mass of electrically driven pump system and turbopump system(gas generator cycle)under different thrust, chamber pressure and working time, a limited chamber pressure exists at a certain thruster for the electrically driven pump system.Below this limit, the electrically driven pump system is lighter than the turbopump system.In addition, the limited chamber pressure increases with engine thruster increasing.Finally, in order to further reduce weight and increase efficiency of the electrically driven pump system, the main technologies of core components are analyzed and the development suggestions are put forward.
参考文献/References:
[1] SUNDEN R, BERRY W.An electric pump-feed system for apogee propulsion of geostationary spacecraft: IAF-85-72 [R].USA:IAF, 1985.
[2] RACHOV P A P, TACCA H, LENTINI D.Electric feed systems for liquid-propellant rockets[J].Journal of Propulsion and Power, 2013, 29(5): 1171-1180.
[3] JOHNSSON G, BIGERT M.Development of small centrifugal pumps for an electric propellant pump system[J].Acta Astronautica,1990, 21(6/7): 429-438.
[4] ATSUMI M, NIU K, YOKOYAMA M.The experimental study of electric boost pump for space transfer vehicle[C]//29th Joint Propulsion Conference and Exhibit.Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993.
[5] MUSZYNSKI M, ALLIOT P.Progress of the the In-Space Propulsion(ISP-1)project[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011.
[6] DLUGIEWICZ L, KOLOWROTKIEWICZ J, SZELAG W, et al.Permanent magnet synchronous motor to drive propellant pump[C]//International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion.New York, USA: IEEE, 2012.
[7] KARP A C, REDMOND M, NAKAZONO B, et al. Technology development and design of a hybrid Mars ascent vehicle concept[C]//2016 IEEE Aerospace Conference. New York, USA: IEEE, 2016.
[8] VAUGHAN D, NAKAZONO B, KARP A, et al. Technology development and design of liquid bi-propellant mars ascent vehicles[C]//2016 IEEE Aerospace Conference. New York, USA: IEEE, 2016.
[9] KWAK H D, KWON S, CHOI C H. Performance assessment of electrically driven pump-fed LOX/kerosene cycle rocket engine: Comparison with gas generator cycle[J]. Aerospace Science and Technology, 2018, 77: 67-82.
[10] GERADA D, MEBARKI A, BROWN N L, et al. High-speed electrical machines: technologies, trends, and developments[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2946-2959.
[11] GORIPARTI S, MIELE E, DE ANGELIS F, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources, 2014, 257: 421-443.
[12] 王丹, 陈宏玉, 周晨初.电动泵压式发动机系统方案与性能评估[J].火箭推进, 2018, 44(2): 28-32.WANG D, CHEN H Y, ZHOU C C. System scheme and performance evaluation of an engine fed by electric pump[J]. Journal of Rocket Propulsion, 2018, 44(2): 28-32.
[13] 关醒凡.现代泵理论与设计[M].北京: 中国宇航出版社, 2011.
[14] KOLONDZOVSKI Z, ARKKIO A, LARJOLA J, et al.Power limits of high-speed permanent-magnet electrical machines for compressor applications[J].IEEE Transactions on Energy Conversion, 2011, 26(1): 73-82.
[15] 张凤阁, 杜光辉, 王天煜, 等.高速电机发展与设计综述[J].电工技术学报, 2016, 31(7): 1-18.
[16] 黄祯, 冯国星.中国科学院高能量密度锂电池研究进展快报[J].储能科学与技术, 2016, 5(2): 172-180.
[17] 李泓, 许晓雄.固态锂电池研发愿景和策略[J].储能科学与技术, 2016, 5(5): 607-614.
[18] BIENSAN P, BORTHOMIEU Y.Saft Li-Ion space batteries roadmap[C]//NASA Aerospace Battery Workshop.Huntsville, AL:[s.n.],2007.
[19] SMART M C, RATNAKUMAR B V, EWELL R C, et al. The use of lithium-ion batteries for JPL’s Mars missions[J].Electrochimica Acta, 2018, 268: 27-40.
[20] Model YASA 400 datasheet[Z].http:// www.yasamotors.com.
[21] Himax HC5030-390 datasheet[Z].http://www.maxxprod.com.
[22] 蔡国飙.液体火箭发动机设计[M].北京: 北京航空航天大学出版社, 2011.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(05):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(05):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(05):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(05):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(05):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(05):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(05):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(05):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(05):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(05):15.
备注/Memo
收稿日期:2019-03-06; 修回日期:2019-05-16作者简介:王浩明(1985—),男,博士,研究领域为新型增压系统、热电转换系统