PDF下载 分享
[1]王浩明,程 诚,李小芳,等.液体火箭发动机电动泵系统发展及性能研究[J].火箭推进,2019,45(05):1-7.
 WANG Haoming,CHENG Cheng,LI Xiaofang,et al.Development and performance study of electrically driven pump system for liquid rocket engine[J].Journal of Rocket Propulsion,2019,45(05):1-7.
点击复制

液体火箭发动机电动泵系统发展及性能研究

参考文献/References:

[1] SUNDEN R, BERRY W.An electric pump-feed system for apogee propulsion of geostationary spacecraft: IAF-85-72 [R].USA:IAF, 1985.
[2] RACHOV P A P, TACCA H, LENTINI D.Electric feed systems for liquid-propellant rockets[J].Journal of Propulsion and Power, 2013, 29(5): 1171-1180.
[3] JOHNSSON G, BIGERT M.Development of small centrifugal pumps for an electric propellant pump system[J].Acta Astronautica,1990, 21(6/7): 429-438.
[4] ATSUMI M, NIU K, YOKOYAMA M.The experimental study of electric boost pump for space transfer vehicle[C]//29th Joint Propulsion Conference and Exhibit.Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993.
[5] MUSZYNSKI M, ALLIOT P.Progress of the the In-Space Propulsion(ISP-1)project[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011.
[6] DLUGIEWICZ L, KOLOWROTKIEWICZ J, SZELAG W, et al.Permanent magnet synchronous motor to drive propellant pump[C]//International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion.New York, USA: IEEE, 2012.
[7] KARP A C, REDMOND M, NAKAZONO B, et al. Technology development and design of a hybrid Mars ascent vehicle concept[C]//2016 IEEE Aerospace Conference. New York, USA: IEEE, 2016.
[8] VAUGHAN D, NAKAZONO B, KARP A, et al. Technology development and design of liquid bi-propellant mars ascent vehicles[C]//2016 IEEE Aerospace Conference. New York, USA: IEEE, 2016.
[9] KWAK H D, KWON S, CHOI C H. Performance assessment of electrically driven pump-fed LOX/kerosene cycle rocket engine: Comparison with gas generator cycle[J]. Aerospace Science and Technology, 2018, 77: 67-82.
[10] GERADA D, MEBARKI A, BROWN N L, et al. High-speed electrical machines: technologies, trends, and developments[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2946-2959.
[11] GORIPARTI S, MIELE E, DE ANGELIS F, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources, 2014, 257: 421-443.
[12] 王丹, 陈宏玉, 周晨初.电动泵压式发动机系统方案与性能评估[J].火箭推进, 2018, 44(2): 28-32.WANG D, CHEN H Y, ZHOU C C. System scheme and performance evaluation of an engine fed by electric pump[J]. Journal of Rocket Propulsion, 2018, 44(2): 28-32.
[13] 关醒凡.现代泵理论与设计[M].北京: 中国宇航出版社, 2011.
[14] KOLONDZOVSKI Z, ARKKIO A, LARJOLA J, et al.Power limits of high-speed permanent-magnet electrical machines for compressor applications[J].IEEE Transactions on Energy Conversion, 2011, 26(1): 73-82.
[15] 张凤阁, 杜光辉, 王天煜, 等.高速电机发展与设计综述[J].电工技术学报, 2016, 31(7): 1-18.
[16] 黄祯, 冯国星.中国科学院高能量密度锂电池研究进展快报[J].储能科学与技术, 2016, 5(2): 172-180.
[17] 李泓, 许晓雄.固态锂电池研发愿景和策略[J].储能科学与技术, 2016, 5(5): 607-614.
[18] BIENSAN P, BORTHOMIEU Y.Saft Li-Ion space batteries roadmap[C]//NASA Aerospace Battery Workshop.Huntsville, AL:[s.n.],2007.
[19] SMART M C, RATNAKUMAR B V, EWELL R C, et al. The use of lithium-ion batteries for JPL’s Mars missions[J].Electrochimica Acta, 2018, 268: 27-40.
[20] Model YASA 400 datasheet[Z].http:// www.yasamotors.com.
[21] Himax HC5030-390 datasheet[Z].http://www.maxxprod.com.
[22] 蔡国飙.液体火箭发动机设计[M].北京: 北京航空航天大学出版社, 2011.

相似文献/References:

[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
 ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(05):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
 GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology for propellant pressurization feed system of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(05):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
 YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process for surface tension tank[J].Journal of Rocket Propulsion,2015,41(05):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
 LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(05):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
 XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(05):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
 MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(05):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
 GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(05):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
 SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application in space propulsion system[J].Journal of Rocket Propulsion,2015,41(05):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障 数据聚类分析研究0[J].火箭推进,2015,41(02):118.
 ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(05):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
 DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(05):15.

备注/Memo

收稿日期:2019-03-06; 修回日期:2019-05-16作者简介:王浩明(1985—),男,博士,研究领域为新型增压系统、热电转换系统

更新日期/Last Update: 2019-10-25