航天推进技术研究院主办
LI Xiaofen,ZHOU Rui,TU Ting.Numerical simulation of opening force for circumferential segmented seal[J].Journal of Rocket Propulsion,2019,45(05):45-51.
圆周分段式密封动压浮起力数值仿真计算
- Title:
- Numerical simulation of opening force for circumferential segmented seal
- 文章编号:
- 1672-9374(2019)05-0045-07
- Keywords:
- circumferential segmented seal; Rayleigh step hydrodynamic lift pad; opening force; three-dimensional numerical simulation
- 分类号:
- V434.1
- 文献标志码:
- A
- 摘要:
- 氢氧火箭发动机氧涡轮泵中氦气隔离密封的作用是防止驱动涡轮的富氢燃气和液氧介质相混合,目前国外氦密封主要应用的是带瑞利(Rayleigh)动压槽的圆周分段式密封,可以有效减少氦气消耗量。这种密封形式设计的关键在于计算动压槽所产生的动压浮起力。利用Fluent流体分析软件,计算了动压浮起力,并与一维计算方法和国外文献中计算结果相比较,验证了三维仿真计算方法的准确性; 分析了气膜厚度、动压槽深度、槽数以及加工误差导致的轴偏斜和槽偏斜等因素对浮起力的影响,密封浮起力随气膜厚度的增大而减小,动压槽深度约为0.01 mm,浮起力达到最大值,轴偏斜和槽偏斜角度越大,浮起力越小。
- Abstract:
- The helium gas isolation seal in the oxygen turbopump of LOX/LH2 rocket engine is used to prevent the mixture of the liquid oxygen and the hydrogen-enriched gas driving the turbine.At present, the main application of helium seal abroad is the circumferential segmented seal with Rayleigh step hydrodynamic lift pad, which can effectively reduce the helium leakage.The key to this seal design is to calculate the opening force generated by Rayleigh step hydrodynamic lift pad.In this paper, the opening force was calculated by Fluent fluid analysis software, andthe accuracy of the three-dimensional simulation calculation method was verifiedby compared with the results of one-dimensional calculation method and the calculation results in foreign literatures.In addition, the effects of the gas film thickness, the number and the depth of Rayleigh steps, the distortion of shaft and Rayleigh step caused by machining errors on the opening force were analyzed.The opening force decreases with the gas film thickness increasing.The opening force reaches its maximum when the depth of Rayleigh steps is 0.01 mm.The larger the shaft distortion and the Rayleigh step, the smaller the opening force.
参考文献/References:
[1] 郑大勇, 陶瑞峰, 张玺, 等.大推力氢氧发动机关键技术及解决途径[J].火箭推进, 2014, 40(2): 22-27, 35.ZHENG D Y, TAO R F, ZHANG X, et al.Study on key technology for large thrust LOX/LH2 rocket engine[J].Journal of Rocket Propulsion, 2014, 40(2): 22-27, 35.
[2] 周芮, 孙晓伟, 吴玉珍, 等.氢氧发动机氧涡轮泵圆周分段氦密封研究现状[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集.大连:中国航天第三专业信息网,2017.
[3] OIKE M, NAGAO R.Characteristics of a shaft seal system for the LE-7 liquid oxygen turbopump:AIAA 95-3102[R].USA:AIAA,1995.
[4] BURCHAM R E.High-speed cryogenic self-acting shaft seals for liquid rocket turbopumps:NASA CR 168194 [R].USA:NASA, 1983.
[5] 王飞, 刘向锋, 刘莹.浅槽环瓣型浮动环密封的性能分析[J].润滑与密封, 2005, 30(6): 74-76, 85.
[6] BUECHAM R E.Liquid rocket engine turbopump rotating-shaft seals:NASA SP-8121 [R].USA:NASA, 1978.
[7] SHAOIRO W, LEE C C.Advanced helium purge seals for liquid oxygen(LOX)turbopumps: NASA CR 182105 [R].USA:NASA,1989.
[8] ZUK J.Fundamentals of fluid sealing: NASA TN D-8121[R].USA:NASA, 1976.
[9] BRUNETIERE N, TOURNERIE B, FRENE J.Influence of fluid flow regine on performances of non-contacting liquid face seals[J].Journal of Tribology, 2002, 124(3): 515.
[10] OIKE M, NOSAKA M.Study on a carbon segmented circumferential seal for a liquid oxygen turbopump[C]// Proceeding of the Japan International Tribology Conference.Nagoya,Japan:Japan Association of Tribologists,1990.
备注/Memo
收稿日期:2018-08-08; 修回日期:2019-01-05作者简介:李小芬(1990—),女,硕士,研究领域为火箭发动机密封研发