航天推进技术研究院主办
SONG Fan,PAN Pan,CHEN Xiaojiang,et al.Porosity suppression technology for large-depth laser welding[J].Journal of Rocket Propulsion,2019,45(06):84-89.
大熔深激光焊气孔抑制技术
- Title:
- Porosity suppression technology for large-depth laser welding
- 文章编号:
- 1672-9374(2019)06-0084-06
- 分类号:
- TG456.7
- 文献标志码:
- A
- 摘要:
- 针对空间发动机中频繁出现的大熔深激光焊需求,以及随之而来的工艺性气孔超标问题,在3种工艺模式下开展了气孔抑制技术研究:一为非熔透焊模式、稍快焊接速度、正向大幅提高离焦量(≥4 mm)、负方向适当倾斜入射(-10°)和辅以大功率补偿熔深; 二为非熔透焊模式、普通焊接速度、正向少许提高离焦量、垂直入射、特定扫描波形(O形)、特定扫描频率(100~150 Hz)和特定扫描幅度(0.4~0.6 mm); 三为稳定熔透焊模式、稍慢焊接速度、表面聚焦、垂直入射、调整功率保证焊缝背宽比介于适宜范围内(0.45~0.65)。最终试验结果显示在4 mm熔深前提下,3种方法皆可将焊缝气孔率控制在5%以下,满足航天焊接标准的II级质量要求,且采用最佳工艺规范焊接的产品已通过了飞行试验考核。
- Abstract:
- Aiming at the frequent demand for deep penetration laser welding in space engines, and the consequent problem of process porosity, researches on porosity suppression technology were carried out in three process modes.The first type is a non-fusion welding mode, slightly faster welding speed, positively increasing the amount of defocus(≥4 mm), proper oblique incidence in the negative direction(-10°), and supplemental high power.The second type is a non-fusion welding mode, common welding speed, positive defocusing amount, vertical incidence, shaped scanning wave(O-shape), scanning frequency(100~150 Hz), and scanning amplitude(0.4~0.6 mm).The third type is a stable penetration welding mode, slightly slower welding speed, surface focusing, vertical incidence, and appropriate power to ensure the back-width ratio between an appropriate zone(0.45~0.65).Final results show that under the premise of 4mm penetration depth, all of the three methods can control the porosity of the weld to below 5%, which meets the second-level quality requirements of the aerospace welding standard.Meanwhile, the products with the best process specifications have passed the flight test.
参考文献/References:
[1] 宋凡, 马纪龙, 于康, 等.空间发动机激光深熔焊气孔特性研究[J].焊接, 2018(8):44-49.
[2] MIZUTANI M, KATAYAMA S, MATSUNAWA A.X-ray observation of keyhole instability in zinc molten pool and estimation of recoil pressure in laser welding[C]//Pacific International Conference on Applications of Lasers and Optics.Melbourne, Australia:Laser Institute of America, 2004.
[3] MATSUNAWA A, SEMAK V.The simulation of front keyhole wall dynamics during laser welding[J].Journal of Physics D:Applied Physics, 1997, 30(5):798-809.
[4] 王威, 徐广印, 段爱琴, 等.1420铝锂合金激光焊接气孔形成机理[J].焊接学报, 2005, 26(11):59-62, 2.
[5] 陈俐.航空钛合金激光焊接全熔透稳定性及其焊接物理冶金研究[D].武汉:华中科技大学, 2005.
[6] 宋凡, 张祎玲, 林嘉伟, 等.空间发动机激光焊功率阈值研究[J].火箭推进, 2018, 44(4):40-46.SONG F, ZHANG Y L, LIN J W, et al.Study on power threshold of laser welding for space engine[J].Journal of Rocket Propulsion, 2018, 44(4):40-46.
[7] 庞盛永.激光深熔焊接瞬态小孔和运动熔池行为及相关机理研究[D].武汉:华中科技大学, 2011.
[8] 金湘中.激光深溶焊接小孔效应的理论和试验研究[D].长沙:湖南大学, 2002.
[9] 陈虹.激光光束质量对光束传输聚焦和加工质量的影响[D].北京:北京工业大学, 2006.
[10] 程元勇.激光深熔焊接铝合金孔内等离子体的反韧致辐射吸收研究[D].长沙:湖南大学, 2012.
[11] XIE J.Double beam laser welding[J].Welding Journal, 2002, 81(10):223-230.
[12] 李俐群, 陈彦宾, 陶汪.铝合金双光束焊接特性研究[J].中国激光, 2008, 35(11):1783-1788.
[13] 包刚, 彭云, 陈武柱, 等.超细晶粒钢光束摆动激光焊接的研究[J].应用激光, 2002, 22(2):203-205, 208.
[14] 赵琳, 张旭东, 陈武柱, 等.光束摆动法减小激光焊接气孔倾向[J].焊接学报, 2004, 25(1):29-32.
[15] 滕彬, 杨海锋, 王小朋, 等.激光小孔型气孔产生原因及抑制方法[J].焊接, 2015(9):34-37, 74.
[16] 张甫, 王威, 王旭友, 等.TC4钛合金激光扫描焊接工艺参数对气孔的影响[J].焊接, 2016(2):35-39, 71.
备注/Memo
收稿日期:2018-10-07; 修回日期:2019-03-23基金项目:装发部预研航天科技联合基金项目; 上海市科学技术委员会资助课题(17DZ2280800)作者简介:宋 凡(1989—),男,硕士,研究领域为空间推进系统激光焊接工艺技术