航天推进技术研究院主办
REN Wenjian,LIU Zhen,ZHANG Teng,et al.X-ray digital imaging detection technology for brazed body of thrust chamber[J].Journal of Rocket Propulsion,2020,46(03):90-95.
推力室钎焊身部X射线数字成像检测技术
- Title:
- X-ray digital imaging detection technology for brazed body of thrust chamber
- 文章编号:
- 1672-9374(2020)03-0090-06
- Keywords:
- brazing body; X-ray digital imaging detection; radiography test; sensitivity; detection efficiency
- 分类号:
- V463
- 文献标志码:
- A
- 摘要:
- 针对常规运载火箭发动机推力室钎焊身部钎焊质量检测需求,深入开展了钎焊身部X射线数字成像自动检测系统与检测工艺研究。研制开发了X射线数字成像自动检测系统,介绍了系统组成与特点。利用该系统开展了分区透照试验,确定了分区数量与机器人路径规划,完成了程序示教。开展了检测灵敏度试验,并与常规X射线胶片照相方法进行了试验对比分析。结果表明该检测系统与工艺可以满足检测要求,能有效检测出2 mm×1.5 mm未钎着缺陷与φ0.5 mm冷却通道堵塞。与射线胶片照相手工拍片相比,其影像变形小、图像宽容度大,提高了缺陷检出率与检测可靠性及一致性,效率提升了3倍。利用该检测工艺检测通过的产品已经完成了试车及飞行任务考核
- Abstract:
- Aiming at the requirement of brazing quality inspection of brazing body in thrust chamber of hypergolic rocket engine, the research on X-ray digital imaging automatic inspection system and inspection technology of brazing body was carried out. An automatic X-ray digital imaging detection system was developed. This system was used to carry out zonal penetration test, determine the number of zones and robot path planning, and complete the program teaching. The sensitivity test was carried out and compared with the conventional X-ray film method. Results show that the detection system and the technology can meet the test requirements, can effectively detect the 2 mm×1.5 mm not soldering defects and φ0.5 mm cooling channel congestion. Compared with manual radiography, the image deformation is small and the image width is large, which improves the defect detection rate, detection reliability and consistency, and the efficiency is increased by three times. The products that passed the tests have completed the test run and flight mission assessment
参考文献/References:
[1] 黄立德.发动机制造技术[M].北京:宇航出版社,1991.
[2] 魏超, 马双民. 液体火箭发动机焊接技术[M]. 北京: 中国宇航出版社, 2016.
[3] 马双民. 液体火箭发动机质量管理与检测技术[M]. 北京: 中国宇航出版社, 2017.
[4] 郑世才. 射线检测[M]. 北京: 机械工业出版社, 2004.
[5] 谭永华, 许艺峰, 张权明, 等. 液体动力制造过程检测技术应用与挑战[J]. 中国航天, 2018(10): 7-13.
[6] 任文坚, 刘贞, 马涛, 等. X射线数字成像检测技术在发动机阀芯质量检测中的应用[J]. 无损探伤, 2019, 43(4): 17-19.
[7] 孙忠诚. 射线数字成像技术[M]. 北京: 机械工业出版社, 2018.
[8] ZHANG S C. Digital radiographyⅠ: a review of digital radiological methods [J].Nondestructive Testing,2012,34(1):49-51.
[9] HAYWARD P. Digital radiography transition for inspection of welds and castings[C]//12th A-PCNDT 2006–Asia-Pacific Conference on NDT. Auckland, New Zealand:[s.n.],2006.
[10] 周锐. 国内外X射线数字成像检测技术标准比对研究[D]. 太原: 中北大学, 2013.
[11] 邬冠华, 熊鸿建. 中国射线检测技术现状及研究进展[J]. 仪器仪表学报, 2016, 37(8): 1683-1695.
[12] 单黎波, 金作花, 贺云龙, 等. 液体火箭发动机钎焊、扩散焊质量检测技术研究[J]. 火箭推进, 2009, 35(6): 47-51.
SHAN L B, JIN Z H, HE Y L, et al. Testing techniques of brazing and diffusion welding quality of liquid rocket engine[J]. Journal of Rocket Propulsion, 2009, 35(6): 47-51.
[13] 赵起良,张建合,郑世才,等. 弹体螺旋装药质量X射线检验技术条件: WJ 1805—2004[S].北京:国防科学技术工业委员会,2001.
[14] 王宗伟. 射线检验技术[J]. 黑龙江科技信息, 2013(35): 57.
[15] 郑世才, 王晓勇. 数字射线检测技术[M]. 北京: 机械工业出版社, 2019.
[16] 王晓飞. X射线胶片照相与数字成像的比对研究[D]. 太原: 中北大学, 2012.
[17] 杨扬, 虞永杰. X射线实时成像检测最佳放大倍数的研究[J]. 无损检测, 2013, 40(10): 1-6.
[18] 罗杰, 刘顺, 魏绍明, 等. 曝光参数对X射线数字成像系统图像质量的影响[J]. 无损检测, 2017, 39(9): 35-38.
[19] 梁丽红,林树青,丁克勤,等.X射线数字成像检测:NB/T 47013.11—2015[S].北京:国家能源局,2015.
备注/Memo
收稿日期:2019-03-20; 修回日期:2019-06-10
基金项目:航天先进制造技术研究联合基金(U1737212)
作者简介:任文坚(1986—),男,硕士,工程师,研究领域为液体火箭发动机无损检测