航天推进技术研究院主办
LIU Haiwa,HU Chengyun,YE Sheng.Study on thermal control of HAN-based green monopropellant thruster[J].Journal of Rocket Propulsion,2020,46(04):38-45.
HAN基无毒单组元发动机热控研究
- Title:
- Study on thermal control of HAN-based green monopropellant thruster
- 文章编号:
- 1672-9374(2020)04-0038-08
- Keywords:
- HAN-based; green monopropellant thruster; thermal control
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 为使某HAN基无毒单组元发动机正常工作,需采用一种高效的热控方式,保证点火前其催化床温度在200 ℃之上(远高于传统单组元发动机的点火温度)。以该HAN基发动机为研究对象,在制定的热控方案基础上,建立有限元模型,采用I-DEAS/TMG软件对该发动机各部件温度进行计算,之后按照产品状态进行发动机真空热试验,获取发动机重点部位的温度数据。结果表明:除前床后部外,其余位置温度测点的热分析和试验温度误差均小于4 ℃,认为两者吻合较好,有限元模型可用于之后的在轨温度预示等工作; 该HAN基发动机身部采用安装一种新型铠装加热丝组件,而后覆盖不锈钢箔的热控方式,结合支架的镂空结构设计,满足发动机工作的温度要求。
- Abstract:
- In order to ensure HAN-based green monopropellant thruster working properly,high efficiency thermal design should be implemented that can maintain the temperature of catalyst bed above 200 ℃,which is higher in comparison with traditional monopropellant thruster. Taking the thruster as the research object,based on the thermal design,the finite element model of the thruster was built,and then the simulation using IDEAS/TMG was performed. In addition,vacuum thermal test was carried out,meanwhile the temperature of some important positions were obtained. It shows that except the temperature of the back part of front catalyst bed,temperature error of other monitoring points between thermal simulation and test are within 4 ℃,so the simulation results can agree well with test temperature data,the finite element model can be used in temperature prediction on orbit. The front catalyst bed of HAN-based green monopropellant thruster was equipped with a new type of wire heater and then covered with stainless steel foils,joined by hollowed bracket,which can meet the upper and lower limit temperature requirements.
参考文献/References:
[1] 刘川,赵峰,刘俊. HAN基无毒单组元1N发动机设计研究[J]. 上海航天,2016,33(4): 32-37.
[2] 李小芳.无毒单组元发动机技术研究[J]. 上海航天,2001,18(3):26-35.
[3] ONODAKA S.Ignition characteristics of HAN liquid for gas-hybrid rockets[R].AIAA 2013-4051.
[4] KAKAMI A.One newton thruster by plasma-assisted combustion of HAN-based monopropellant[R].AIAA 2012-3756.
[5] PERSSON M,ANFLO K,DINARDI A,et al. A family of thrusters for ADN-based monopropellant LMP-103S[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta,Georgia. Reston,Virigina: AIAA,2012.
[6] 刘俊,刘川. 无毒单元发动机催化燃烧过程可视化试验研究[J]. 导弹与航天运载技术,2017(3): 45-48.
[7] 刘俊,潘一力,李伟,等. C/SiC复合材料在高能HAN发动机上应用研究[J]. 火箭推进,2017,43(5): 63-68.LIU J,PAN Y L,LI W,et al. Research on application of C/SiC composite in high-energy HAN-based thruster[J]. Journal of Rocket Propulsion,2017,43(5): 63-68.
[8] 杭观荣,洪鑫,康小录. 国外空间推进技术现状和发展趋势[J]. 火箭推进,2013,39(5): 7-15.HANG G R,HONG X,KANG X L. Current status and development trend of space propulsion technologies abroad[J]. Journal of Rocket Propulsion,2013,39(5): 7-15.
[9] MCLEAN C H,HALE M J,DEININGER W D.Green propellant infusion mission program overview[R].AIAA 2013-3847.
[10] DEININGER W D,ATTEBERRY J,BYGOTT K,et al.Implementation of the green propellant infusion mission(GPIM)on a ball aerospace BCP-100 spacecraft bus[R].AIAA 2013-3848.
[11] SPORES R A,MASSE R,KIMBREI S. GPIM AF-M315E propulsion system[R]. AIAA 2013-3849.
[12] MCLEAN C H,DEININGER W D,JONIATIS J. Green propellant infusion mission program development and technology maturation[R].AIAA 2014-348.
[13] YIM J T,REED B D. Green propellant infusion mission plume impingement analysis[R].AIAA 2013-3850.
[14] 鲍世国,公绪滨,陈艺,等. 一种HAN基单元推进剂及催化分解性能研究[J]. 火箭推进,2018,44(2): 39-45.BAO S G,GONG X B,CHEN Y,et al. Investigation of a novel HAN-based monopropellant and its catalytic decomposition performance[J]. Journal of Rocket Propulsion,2018,44(2): 39-45.
[15] 陈兴强,张志勇,滕奕刚,等. 可用于替代肼的2种绿色单组元液体推进剂HAN、ADN[J]. 化学推进剂与高分子材料,2011,9(4): 63-66.
[16] 吴靖,孙威,蔡国飙. 内加热式N2O单组元推力器预热过程仿真与试验[J]. 航空动力学报,2013,28(3): 556-560.
[17] 汪琼华,汤建华,洪鑫,等.小推力单元肼推力器温度场数值分析[J].火箭推进,2007,33(1):18-22.WANG Q H,TANG J H,HONG X,et al.Numerical investigation on low power monopropellant hydrazine thruster[J].Journal of Rocket Propulsion,2007,33(1):18-22.
[18] 孙威,方杰,张佳,等. N2O单组元推力器预热过程有限元分析[J]. 航空动力学报,2009,24(9): 2152-2156.
[19] 沈军,刘伟强,汤建华. 单组元发动机推力室在轨温度数值仿真[J]. 推进技术,2003,24(3): 201-203.
[20] DARYABEIGI K. Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating[J]. Journal of Spacecraft and Rockets,2002,39(4): 509-514.
[21] 侯增祺,胡金刚. 航天器热控制技术:原理及其应用[M]. 北京: 中国科学技术出版社,2007.
[22] NESBITT J A. Thermal modeling of various thermal barrier coatings in a high heat flux rocket engine[J]. Surface and Coatings Technology,2000,130(2/3): 141-151.
备注/Memo
收稿日期:2019-11-28; 修回日期:2020-03-21
基金项目:上海市科学技术委员会资助课题(17DZ2280800)
作者简介:刘海娃(1980—),女,硕士,高级工程师,研究领域为航天器热控制设计