航天推进技术研究院主办
YU Qing,ZHAO Hui,YUAN Weiwei,et al.Numerical study on aerodynamic optimization of liquid rocket engine turbine[J].Journal of Rocket Propulsion,2020,46(05):21-26.
液体火箭发动机涡轮气动优化数值研究
- Title:
- Numerical study on aerodynamic optimization of liquid rocket engine turbine
- 文章编号:
- 1672-9374(2020)05-0021-06
- Keywords:
- liquid rocket engine; turbine; area ratio; aerodynamic optimization
- 分类号:
- V434.211
- 文献标志码:
- A
- 摘要:
- 在某型液体火箭发动机研制中,为了使氧预压涡轮泵中驱动涡轮的燃气与主路中的液氧完全掺混、冷凝,需要尽可能地提高涡轮效率。采用并行多目标气动优化设计软件,以自适应多目标差分进化算法为优化工具对氧预压涡轮泵叶栅进行优化设计。计算结果表明:涡轮各级优化设计后,内部流动损失减小,整机效率提高了3.739%; 涡轮转子两列动叶的最大应力均小于材料的屈服强度,满足强度要求; 涡轮叶栅采用并行多目标气动优化方法进行优化,降低了燃气比例,有利于火箭发动机氧预压涡轮泵中燃气的更好溶解。
- Abstract:
- During the development of a liquid rocket engine, in order to completely mix and condense the gas driving the turbine in the oxygen pre-pressurized turbo pump with the liquid oxygen in the main circuit, it is necessary to improve the turbine performance as much as possible.In this paper, the parallel multi-objective aerodynamic optimization design software was used to optimize the cascade design of the oxygen pre-pressurized turbo pump with the adaptive multi-objective differential evolution algorithm as the optimization tool.The calculation results show that after the optimization design of the turbine, the internal flow loss is reduced and then the overall efficiency is increased by 3.739%.The maximum stress of the two stage blades of the turbine rotor is less than the yield strength of the material, which meets the strength requirements.The turbine cascade can be optimized by the parallel multi-objective aerodynamic optimization method, which reduces the gas ratio and is beneficial to the complete dissolution of gas in the oxygen pre-pressurized turbo pump of rocket engine.
参考文献/References:
[1] 李向阳, 王晓锋, 宣统, 等.液氧/煤油发动机煤油预压涡轮泵技术[J].火箭推进, 2009, 35(1): 16-20.
LI X Y, WANG X F, XUAN T, et al.Techniques of kerosene booster turbopump for LOX/kerosene staged combustion cycle engine[J].Journal of Rocket Propulsion, 2009, 35(1): 16-20.
[2] 关醒凡.泵的理论与设计[M].北京: 机械工业出版社, 1987.
[3] 奥夫相尼科夫,博罗夫斯基.液体火箭发动机涡轮泵装置原理与计算[M].任汉芬,夏德新,译.北京:中国航天工业总公司第十一研究所,1999.
[4] 廖懂华, 林奇燕, 叶小明.预压涡轮泵轴流式液力涡轮的流动结构研究[J].导弹与航天运载技术, 2018(6): 49-54.
[5] 严俊峰, 吴宝元, 逯婉若.基于Optimus的涡轮气动优化设计[J].火箭推进, 2008, 34(2): 13-17.
YAN J F, WU B Y, LU W R.Turbo aerodynamics optimization design based on optimus flat[J].Journal of Rocket Propulsion, 2008, 34(2): 13-17.
[6] 林奇燕, 金志磊, 王磊.超音速复速级涡轮的气动设计改进[J].火箭推进, 2014, 40(1): 65-70.
LIN Q Y, JIN Z L, WANG L.Aerodynamic redesign of supersonic Curtis-stage turbine[J].Journal of Rocket Propulsion, 2014, 40(1): 65-70.
[7] 宋立明, 李军, 丰镇平.跨音速透平扭叶片的气动优化设计研究[J].西安交通大学学报, 2005, 39(11): 1277-1281.
[8] 张金春, 李宇峰.某型高压汽轮机动叶栅的气动优化设计[J].汽轮机技术, 2007, 49(1): 12-13.
[9] 李旭升, 郑继坤, 吴玉珍.某型超音速冲击式氧涡轮叶型气动优化[J].火箭推进, 2014, 40(5): 44-49.
LI X S, ZHENG J K, WU Y Z.Aerodynamic optimization for blade profile of a supersonic impulse oxygen turbine[J].Journal of Rocket Propulsion, 2014, 40(5): 44-49.
[10] 张剑, 曾军, 葛宁, 等.涡轮三维叶片气动优化设计集成及应用[J].燃气涡轮试验与研究, 2015, 28(3): 1-7.
[11] 李志, 刘艳, 杨金广, 等.超声速涡轮叶型全局气动优化设计[J].推进技术, 2019, 40(5): 1051-1057.
[12] 陈远东.汽轮机调节级喷嘴组气动优化设计[J].汽轮机技术, 2015, 57(4): 251-254.
[13] 马洪波, 朱剑, 席平.基于参数化的涡轮叶片三维气动优化仿真[J].计算机仿真, 2008, 25(10): 27-30.
[14] 张金环, 周正贵.基于并行遗传算法的向心涡轮气动优化设计[J].航空发动机, 2015, 41(3): 39-43.
[15] 张明明, 赵曙光, 王旭.一种自适应多目标离散差分进化算法[J].计算机工程与应用, 2009, 45(26): 16-20.
[16] 刘志君, 高亚奎, 章卫国, 等.变邻域分解多目标自适应差分进化算法[J].控制理论与应用, 2014, 31(11): 1492-1501.
[17] DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J].IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[18] GINSBOURGER D, RICHO L R, CARRARO L.A multi-points criterion for deterministic parallel global optimization based on krigine[J].Journal of Global Optimization in Revision,2008, 1: 1-30.
[19] SASENA M J, PAPALAMBROS P, GOOVAERTS P.Exploration of metamodeling sampling criteria for constrained global optimization[J].Engineering Optimization, 2002, 34(3): 263-278.
[20] BISCHL B, WESSING S, BAUER N, et al.MOI-MBO: multiobjective infill for parallel model-based optimization[C]//Lecture Notes in Computer Science.Cham: Springer International Publishing, 2014: 173-186.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(05):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(05):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(05):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(05):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(05):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(05):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(05):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(05):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(05):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(05):15.
备注/Memo
收稿日期:2019-11-20; 修回日期:2020-03-27
基金项目:国家重大基础研究项目(613321)
作者简介:于晴(1986—),女,硕士,研究领域为涡轮泵设计