航天推进技术研究院主办
REN Mengfei,XI Wenxiong,LUO Shibin,et al.Numerical simulation of mixing flow in the head of powder fuel ramjet[J].Journal of Rocket Propulsion,2020,46(05):35-41.
粉末燃料冲压发动机头部组织掺混流动数值模拟
- Title:
- Numerical simulation of mixing flow in the head of powder fuel ramjet
- 文章编号:
- 1672-9374(2020)05-0035-07
- 分类号:
- TJ55
- 文献标志码:
- A
- 摘要:
- 为了分析头部结构对粉末燃料冲压发动机内部掺混流动影响,基于某典型粉末燃料冲压发动机构型,设计了双下侧进气式方形头部和圆形头部,采用三维组分输运数值模拟方法,对比分析了方形头部和圆形头部的结构设计对发动机补燃室内部流场的影响。数值模拟结果表明:方形头部在补燃室头部仅形成弱回流区,各截面压力恢复系数沿着燃气流动方向逐渐减小。圆形头部结构产生的流场在对称面处形成类对称的强回流区,使补燃室的流动更益于粉末注入,各截面掺混效率和压力恢复系数均大于方形头部。
- Abstract:
- In order to analyze the effect of the head structure on the internal mixing flow of the powder fuel ramjet engine, based on the configuration of a typical powder fuel ramjet, a square head and around head of the engine with double lower side intake were designed.The effect of the structural design of the square head and the circular head on the flow field in the afterburner chamber was analyzed and compared by the 3D numerical simulation method of component transport.The results demonstrate that the square head only forms a weak recirculation zone at the head of the afterburning chamber, and the pressure recovery coefficient of each section decreases gradually along the flow direction.However, the round head structure forms a symmetric strong backflow area at the symmetric plane, making the flow of the afterburning chamber more beneficial to the powder injection, and the mixing efficiency and pressure recovery coefficient of each section are larger than the square head.
参考文献/References:
[1] GOROSHIN S, HIGGINS A, LEE J.Powdered magnesium-carbon dioxide propulsion concepts for Mars missions[C]//35th Joint Propulsion Conference and Exhibit.Los Angeles, CA, USA.Reston, Virigina: AIAA, 1999: 2408.
[2] FOOTE J P, LITCHFORD R J.Powdered magnesium-carbon dioxide rocket combustion technology for in situ mars propulsion[Z].2007.
[3] GOROSHIN S, HIGGINS A, KAMEL M.Powdered metals as fuel for hypersonic ramjets[C]//37th Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2001.
[4] ONERA.Ramjet, scramjet and PDE-an introduction[Z].2002.
[5] MILLER T, HERR J.Green rocket propulsion by reaction of Al and Mg powders and water[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2004.
[6] ABBUD-MADRID A, MODAK A, BRANCH M C, et al.Combustion of magnesium with carbon dioxide and carbon monoxide at low gravity[J].Journal of Propulsion and Power, 2001, 17(4): 852-859.
[7] SHAFIROVICH E, SHIRYAEV A A, GOLDSHLEGER U I.Magnesium and carbon dioxide-a rocket propellant for Mars missions[J].Journal of Propulsion and Power, 1993, 9(2): 197-203.
[8] SHAFIROVICH E, VARMA A.Metal-CO2 propulsion for Mars missions: current status and opportunities[J].Journal of Propulsion and Power, 2008, 24(3): 385-394.
[9] 韩超.粉末冲压发动机燃料供应系统研究[D].长沙: 国防科学技术大学, 2006.
[10] 孔龙飞, 夏智勋, 胡建新, 等.粉末燃料供应装置中增设扰流锥体数值模拟研究[J].火箭推进, 2012, 38(2): 56-62.
KONG L F, XIA Z X, HU J X, et al.Numerical investigation of fluid disturbing cone added in powdered fuel feeding system[J].Journal of Rocket Propulsion, 2012, 38(2): 56-62.
[11] 刘一.金属粉末燃料供应与燃烧的数值研究[D].哈尔滨: 哈尔滨工程大学, 2015.
[12] 许一楠.金属粉末燃料发动机燃料供应系统研究[D].哈尔滨: 哈尔滨工程大学, 2018.
[13] 杨晋朝.粉末燃料冲压发动机内镁颗粒群着火燃烧特性研究[D].长沙: 国防科学技术大学, 2013.
[14] 杨晋朝, 夏智勋, 胡建新, 等.粉末燃料高效装填技术研究[J].固体火箭技术, 2013, 36(1): 37-44.
[15] 刘龙.镁硼混合粉末燃料冲压发动机点火自维持燃烧特性研究[D].长沙: 国防科学技术大学, 2014.
[16] 申慧君, 夏智勋, 胡建新, 等.粉末燃料冲压发动机自维持稳定燃烧试验研究[J].固体火箭技术, 2009, 32(2): 145-149.
[17] 申慧君, 夏智勋, 胡建新, 等.粉末燃料冲压发动机燃烧室两相流数值模拟[J].固体火箭技术, 2007, 30(6): 474-477.
[18] 孙海俊, 胡春波, 徐义华.粉末推进剂流化过程及高压流化机制分析[J].推进技术, 2018, 39(12): 2853-2862.
[19] 张虎, 胡春波, 孙海俊, 等.稠密气固两相流颗粒质量流量测量方法研究[J].固体火箭技术, 2015, 38(1): 136-140.
[20] SUN H J, HU C B, ZHANG T, et al.Experimental investigation on mass flow rate measurements and feeding characteristics of powder at high pressure[J].Applied Thermal Engineering, 2016, 102: 30-37.
[21] SUN H J, HU C B, ZHU X F, et al.Experimental investigation on incipient mass flow rate of micro aluminum powder at high pressure[J].Experimental Thermal and Fluid Science, 2017, 83: 231-238.
[22] 陈静敏, 李志永, 王登云, 等.旁侧突扩加热器燃烧性能研究[J].推进技术, 2013, 34(12): 1677-1681.
[23] 赵春宇, 李斌, 鞠玉涛.环向进气固体火箭冲压发动机补燃室流场数值模拟[J].弹箭与制导学报, 2008, 28(2): 136-138.
[24] 郑凯斌, 陈林泉, 张胜勇.中心进气式固体火箭冲压发动机试验研究[J].固体火箭技术, 2007, 30(2): 124-127.
[25] 王希亮, 孙振华.头部两侧和单侧进气对固冲发动机燃烧影响[J].现代防御技术, 2016, 44(2): 68-73.
[26] 王希亮, 孙振华, 贺永杰, 等.头部两侧进气固冲发动机补燃室内流场研究[J].航空兵器, 2011(5): 51-55.
[27] 王金金, 查柏林, 张炜, 等.进气道结构对固体冲压发动机补燃室燃烧及内壁流场的影响[J].北京航空航天大学学报, 2019, 45(5): 989-998.
[28] 胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙: 国防科学技术大学, 2006.
[29] VANKA S, CRAIG R, STULL F.Mixing, chemical reaction and flow field development in ducted rockets[C]//21st Joint Propulsion Conference.Reston, Virigina: AIAA, 1985: 1271.
[30] KOPCHENOV V, LOMKOV K.The enhancement of the mixing and combustion processes in supersonic flow applied to scramjet engine[C]//28th Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 1992.
备注/Memo
收稿日期:2020-03-04; 修回日期:2020-04-20
基金项目:西安近代化学研究所开放合作创新基金(748030030)
作者简介:任蒙飞(1994—),男,硕士,研究领域为粉末燃料冲压发动机
通信作者:席文雄(1984—),男,博士,研究领域为超燃冲压发动机燃烧过程技术