航天推进技术研究院主办
ZHANG Meng,SUN Bing.Numerical study on enhanced heat transfer technology ofLOX/CH4engine chamber with ribs[J].Journal of Rocket Propulsion,2021,47(02):19-26.
液氧/甲烷发动机推力室肋强化换热技术数值研究
- Title:
- Numerical study on enhanced heat transfer technology ofLOX/CH4engine chamber with ribs
- 文章编号:
- 1672-9374(2021)02-0000-08
- Keywords:
- regenerative cooling; enhanced heat transfer; numerical simulation; artificial roughness; longitudinal rib
- 分类号:
- V434.14
- 文献标志码:
- A
- 摘要:
- 为了提高液氧/甲烷发动机再生冷却通道中冷却剂的吸热效率,同时提高该区域的热防护能力,本文对带有四种不同肋结构的推力室进行了三维稳态耦合传热计算。分析结果表明,在推力室燃气侧壁面设置纵向肋之后,通过引入等效平均热流密度能够描述带肋发动机推力室壁面的实际换热特征。设置人工粗糙度能够使壁面温度降低85.4 K,但会使的压降增大0.11 MPa。设置纵向肋则使冷却剂温升提高24.2 K,但同时壁面温度升高276.4 K。此外,虽然人工粗糙度能促进流体之间的传热进而使冷却剂温度分层有所削弱,但由于壁面温度较低导致靠近通道底部处的流体温度明显较低,因此冷却剂温升并没有明显提高。
- Abstract:
- In order to improve the heat absorption efficiency of coolant in the regenerative cooling channel of LOX/methane engines, and improve the thermal protection ability of the region,three-dimensional steady-state heat transfer coupling simulation of chamber with four different rib arrangements were carried out in this paper. By comparing the results, it can be seen that after adding longitudinal ribs on the gas side wall of the thrust chamber, the actual heat transfer characteristics of the thrust chamber wall can be accurately described by introducing the equivalent average heat flux. Adding artificial roughness reduced the wall temperature by 85.4 K and increased the pressure drop by 0.11 MPa. Adding longitudinal ribs increased the coolant temperature by 24.2 K, but the wall temperature increased by 276.4 K. In addition, although the addition of artificial roughness can promote the heat transfer between the fluids and weaken the temperature stratification of the coolant, the temperature rise of the coolant is not significantly increased because the temperature of the fluid near the bottom of the channel is significantly lower due to the lower wall temperature.
参考文献/References:
[1] NEILL T, JUDD D, VEITH E, et al. Practical uses of liquid methane in rocket engine applications[J]. Acta Astronautica, 2009, 65(5/6): 696-705. [2] 章思龙, 秦江, 周伟星, 等. 高超声速推进再生冷却研究综述[J]. 推进技术, 2018, 39(10): 2177-2190. [3] WANG T S, LUONG V. Hot-gas-side and coolant-side heat transfer in liquid rocket engine combustors[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(3): 524-530. [4] LIU Q Y, LUKE E A, CINNELLA P. Coupling heat transfer and fluid flow solvers for multidisciplinary simulations[J]. Journal of Thermophysics and Heat Transfer, 2005, 19(4): 417-427. [5] SONG J W, SUN B. Coupled numerical simulation of combustion and regenerative cooling in LOX/Methane rocket engines[J]. Applied Thermal Engineering, 2016, 106: 762-773. [6] SONG J W, SUN B. Coupled heat transfer analysis of thrust Chambers with recessed shear coaxial injectors[J]. Acta Astronautica, 2017, 132: 150-160. [7] VLADIMIR B, JOSEPH A, ALEXANDER B. New upper stage expander cycles[R]. AIAA,2013-4055,2013. [8] SEZAKI C, OGAWARA A. Characteristics of expander bleed cycle and full expander cycle[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose, CA: AIAA, 2013. [9] NEGISHI H, DAIMON Y, KAWASHIMA H. Flowfield and heat transfer characteristics in the LE-X expander bleed cycle combustion chamber[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: AIAA, 2014. [10] KAWASHIMA H, SAKAMOTO H, TAKAHASHI M, et al. Hot-gas-side heat transfer characteristics of a ribbed combustor[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver, Colorado: AIAA. [11] NEGISHI H, KUMAKAWA A, MORIYA S, et al. Numerical investigations of heat transfer enhancement in a thrust chamber with hot gas side wall ribs[R].AIAA 2009-830,2009. [12] BETTI B, NASUTI F, MARTELLI E. Numerical evaluation of heat transfer enhancement in rocket thrust Chambers by wall ribs[J]. Numerical Heat Transfer, Part A: Applications, 2014, 66(5): 488-508. [13] 陈建华, 杨宝庆, 周立新, 等. 人为粗糙度强化换热机理分析及效果评估[J]. 火箭推进, 2004, 30(4): 1-5.CHEN J H, YANG B Q, ZHOU L X, et al. The mechanism and effect of artificial roughness on heat transfer enhancement[J]. Journal of Rocket Propulsion, 2004, 30(4): 1-5. [14] HOSSIAN J, TRAN L V, CARPENTER C, et al. Numerical study of enhancement of regenerative cooling using ribs[R]. AIAA 2013-3996,2013. [15] KAMALI R, BINESH A R. The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces[J]. International Communications in Heat and Mass Transfer, 2008, 35(8): 1032-1040. [16] DANG G X, ZHONG F Q, ZHANG Y J, et al. Numerical study of heat transfer deterioration of turbulent supercritical kerosene flow in heated circular tube[J]. International Journal of Heat and Mass Transfer, 2015, 85: 1003-1011. [17] FENG Y, QIN J, BAO W, et al. Numerical analysis of convective heat transfer characteristics of supercritical hydrocarbon fuel in cooling panel with local flow blockage structure[J]. The Journal of Supercritical Fluids, 2014, 88: 8-16. [18] YANG B, SESHADRI K. Asymptotic analysis of the structure of non-premixed methane air Flames using reduced chemistry[J]. Combustion Science and Technology, 1993,88(1-2): 115-132. [19] 康玉东, 孙冰. 燃气非平衡流再生冷却流动传热数值模拟[J]. 推进技术, 2011, 32(1): 119-124.KANG Y D, SUN B. Numerical simulation of regeneraive cooling flow and heat transfer with nonequilibrium flow[J]. Journal of Propulsion Technology, 2011, 32(1): 119-124. [20] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203.
相似文献/References:
[1]孙 鑫,杨成虎.5 kN再生冷却发动机推力室传热研究[J].火箭推进,2012,38(02):32.
SUN Xin,YANG Cheng-hu.Heat transfer investigation for 5 kN regeneratively-cooled engine thrust chamber[J].Journal of Rocket Propulsion,2012,38(02):32.
[2]徐辉,易琪,钟徐,等.1 0kN双向摇摆再生冷却发动机技术研究[J].火箭推进,2009,35(05):8.
Xu Hui,Yi Qi,Zhong Xu,et al.Research on 1 0kN gimbaled regeneratively cooled engine[J].Journal of Rocket Propulsion,2009,35(02):8.
[3]方磊.刘伟.姿控用再生冷却推力室传热特性研究[J].火箭推进,2008,34(06):6.
Fang Lei,Liu Wei.Research on heat transf.er characteristic of regeneratiVely
cooled attitude control engine thmst chamber[J].Journal of Rocket Propulsion,2008,34(02):6.
[4]栾叶君,孙纪国,田昌义,等.氢氧推力室再生冷却内壁故障分析[J].火箭推进,2006,32(05):17.
Luan Yejun,Sun Jiguo,Tian Changyi,et al.Failure analysis on regeneratively cooled wall of a hydrogen-oxygen thrust chamber[J].Journal of Rocket Propulsion,2006,32(02):17.
[5]徐辉,林庆国,汪允武,等.挤压式低室压推力室再生冷却问题[J].火箭推进,2006,32(06):12.
Xu Hui,Lin Qingguo,Wang Yunwu,et al.Regenerative cooling of the pressure-fed thruster with low-pressure chamber[J].Journal of Rocket Propulsion,2006,32(02):12.
[6]许晓勇,赵世红,王召.轻质钛合金喷管在氢氧发动机上的应用研究[J].火箭推进,2016,42(04):1.
XU Xiaoyong,ZHAO Shihong,WANG Zhao.Application of lightweight titanium alloy nozzle in LOX-LH2 rocket engine[J].Journal of Rocket Propulsion,2016,42(02):1.
[7]金烜,沈赤兵,吴先宇,等.超燃冲压发动机再生冷却技术研究进展[J].火箭推进,2016,42(05):66.[doi:10.3969/j.issn.1672-9374.2016.05.012]
JIN Xuan,SHEN Chibing,WU Xianyu,et al.Progress of regenerative cooling technology for scramjet[J].Journal of Rocket Propulsion,2016,42(02):66.[doi:10.3969/j.issn.1672-9374.2016.05.012]
[8]刘朝晖,陈雪娇,蒋榕培.超高参数火箭煤油在小通道圆管内的流动换热特性[J].火箭推进,2024,50(05):114.[doi:10.3969/j.issn.1672-9374.2024.05.011]
LIU Zhaohui,CHEN Xuejiao,JIANG Rongpei.Convective heat transfer characteristics of rocket kerosene in circular mini-tubes at ultra-high parameter conditions[J].Journal of Rocket Propulsion,2024,50(02):114.[doi:10.3969/j.issn.1672-9374.2024.05.011]
[9]张 萌,孙 冰.人工粗糙度对矩形弯曲管道流动与传热数值模拟[J].火箭推进,2020,46(01):20.
ZHANG Meng,SUN Bing.Numerical simulation of flow and heat transfer in a curved rectangular channel with artificial roughness[J].Journal of Rocket Propulsion,2020,46(02):20.
备注/Memo
收稿日期:2020-08-24
基金项目:国家自然科学基金(11602186)
作者简介:张萌(1993—),男,博士,研究领域为液体火箭发动机热防护仿真。