航天推进技术研究院主办
ZHENG Riheng,CHEN Caobin.Overview of solutions to TBCC engine thrust trap problem[J].Journal of Rocket Propulsion,2021,47(06):21-32.
涡轮基组合循环发动机推力陷阱问题解决方案
- Title:
- Overview of solutions to TBCC engine thrust trap problem
- 文章编号:
- 1672-9374(2021)06-0021-12
- 分类号:
- V236
- 文献标志码:
- A
- 摘要:
- 涡轮基组合循环(TBCC)发动机模态转换过程中推力陷阱问题需要得到解决。对比了国内外TBCC发动机推力陷阱问题的解决方案,分析了不同方案在选择时需要考虑的主要影响因素。结果表明,变循环方案是以几何调节延缓涡轮发动机推力衰减来解决陷阱问题 而预冷方案和火箭助力方案是以大幅提高发动机整机推力来解决推力陷阱问题。TBCC发动机推力陷阱解决方案的选择,与飞行器的任务需求、发动机性能、燃料选择及技术成熟度等多重要素相关联,需要根据飞行器的具体要求及自身技术积累权衡确定。预冷方案可望在TBCC发动机中得到应用。
- Abstract:
- The problem of thrust trap during mode transition for turbine based combined cycle(TBCC)needs to be solved. Different solutions to the thrust trap problem of TBCC engine are reviewed and compared in this paper. The basic principles and key technologies of different solutions are compared,and the main factors that should be considered in the selection of solutions are presented. The results show that the variable cycle scheme solves the trap problem by delaying the turbine engine thrust attenuation with geometric adjustment. And the pre-cooling scheme and the rocket-boosted scheme solve the thrust trap problem by greatly increasing the thrust of the engine. The choice of TBCC engine thrust trap solution is related to the mission requirements,engine performance,fuel selection and technology maturity and so on,which need to be determined according to the specific requirements of the aircraft and its own technology accumulation.It is hopeful that the pre-cooling technology may be applied in TBCC engine.
参考文献/References:
[1] THOMAS S R,WALKER J F,PITTMAN J L. Overview of the turbine based combined cycle discipline[EB/OL].https://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071125883.html,2009.
[2] HAID D A,GAMBLE E J. Integrated tutbine-based combined cycle dynamic simulation model[C]//58th JANNAF(JPM / CS / APS / EPSS / PHHS)Propulsion Meeting Arlington.[S.l.]:JANNAF,2011.
[3] BOWCUTT K,SAUNDERS D,EDWARDS J. TBCC dual-inlet mode transition[Z].National Center for Hypersonic Combined Cycle Propulsion,2011.
[4] SIEBENHAAR A,BOGAR T. Integration and vehicle performance assessment of the aerojet “TriJet” combined-cycle engine[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston,Virginia:AIAA,2009.
[5] ZHENG J L,CHANG J T,YANG S B,et al.Trajectory optimization for a TBCC-powered supersonic vehicle with transition thrust pinch[J].Aerospace Science and Technology,2019,84:214-222.
[6] 汤华. 高马赫数涡轮发动机技术研究[J].战术导弹技术,2016(3):71-76.
[7] 张彦军,于学明,郭帅帆. 可回收旁路放气技术在高速涡轮发动机上的应用分析[J].科技创新与应用,2015(20):17-18.
[8] 徐思远,朱之丽,刘振德,等. 革新涡轮加速器模态转换特性研究[J].推进技术,2020,41(3):516-526.
[9] LEE J H,WINSLOW R,BUEHRLE R J. The GE-NASA RTA hyperburner design and development[EB/OL].https://www.semanticscholar.org/paper/The-GE-NASA-RTA-Hyperburner-Design-and-Development-Lee-Winslow/9a29f6f9d3b4cc4495fe8c41e13c4611e6d918c6,2005.
[10] PAUL A B,NANCY B M. Highspeed turbines:development of a turbine accelerator(RTA)for space access[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston,Virginia:AIAA,2003.
[11] THOMAS S R. TBCC discipline overview: hypersonics project[EB/OL].https://www.semanticscholar.org/paper/Tbcc-Discipline-Overview.-Hypersonics-Project-Thomas/46b48ff29c6cc68e77b3547e5dac2701f9e29e15,2013.
[12] MCNELIS N,BARTOLOTTA P. Revolutionary turbine accelerator(RTA)demonstrator[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston,Virginia:AIAA,2005.
[13] CELESTINA M L,SUDER K L,KULKARNI S. Results of an advanced fan stage over a wide operating range of speed and bypass ratio:part II—comparison of CFD and experimental results[C]// ASME Turbo Expo 2010:Power for Land,Sea,and Air.New York:ASME,2010.
[14] 陈敏. 涡轮/冲压组合动力技术发展研究[EB/OL].https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=ZGHU201404001007,2014.
[15] FUJIMURA T,ISHII K,TAKAGI S,et al.HYPR90-Tturbo engine research for HST combined cycle engine[C]// Aerospace Technology Conference and Exposition.Warrendale,PA:SAE International,1995.
[16] 王占学,张明阳,张晓博,等. 变循环涡扇冲压组合发动机发展现状及关键技术分析[J].推进技术,2020,41(9):1921-1934.
[17] BALEPIN V,LISTON G. The steam Jet-Mach 6+ turbine engine with inlet air conditioning[C]// 37th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2001.
[18] YOUNG D,OLDS J. Responsive access small cargo affordable launch(RASCAL)independant performance evaluation[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston,Virginia:AIAA,2005.
[19] CARTER P,BALEPIN V. Mass injection and precompressor cooling engines analyses[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2002.
[20] 李成,蔡元虎,屠秋野,等. 射流预冷却吸气式涡轮火箭发动机性能模拟[J].推进技术,2011,32(1):1-4.
[21] CARTER P H,BALEPIN V,SPATH T. MIPCC technology development[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston,Virginia:AIAA,2003.
[22] 李艳军,常鸿雯,薛洪科,等. 射流装置降温性能评估及敏感性分析[J].航空发动机,2017,43(1):85-90.
[23] 罗佳茂. TBCC发动机涡轮进气道喷水冷却特性数值研究[C]//中国航天第三专业信息网. S03吸气式与组合推进技术.[S.l.]:中国航天第三专业信息网,2018.
[24] 杨昊. 射流预冷发动机压缩部件两相流动数值模拟[D].哈尔滨:哈尔滨工程大学,2017.
[25] 林阿强. 高马赫数下射流预压缩冷却的数值研究[C]//中国航天第三专业信息网会议论文集.[S.l.]:中国航天第三专业信息网,2017.
[26] KOBAYASHI H,TAGUCHI H,KOJIMA T,et al.Performance analysis of Mach 5 hypersonic turbojet developed in JAXA[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston,Virginia:AIAA,2012.
[27] BECHTEL R S,OLDS J R. T-BEAT:a conceptual design tool for turbine-based propulsion system analysis[EB/OL].https://xueshu.baidu.com/usercenter/paper/show? paperid=a4115a5c40f84e12a3bd0eee43fa78ad,2001.
[28] 邹正平,王一帆,额日其太,等. 高超声速强预冷航空发动机技术研究进展[J].航空发动机,2021,47(4):8-21.
[29] 周兵,梁新刚.基于煤油热沉的进气预冷涡轮风扇发动机热力性能分析[EB/OL].https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=HTDZ201708010031,2017.
[30] HARADA K,TANATSUGU N,SATO T. Development study of a precooler for the air-turboramjet expander-cycle engine[J].Journal of Propulsion and Power,2001,17(6):1233-1238.
[31] FEAST S. The synergetic air-breathing rocket engine(SABRE)development status update[C]//71st International Astronautical Congress. [S.l.]:International Astronautical Federation,2020.
[32] 之兼. Hermeus公司首次利用新的高超声速测试设施完成发动机测试[N].中国航空报,2021-09-17(8).
[33] BULMANM,SIEBENHAAR A. Combined cycle propulsion:aerojet innovations for practical hypersonic vehicles[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston,Virigina:AIAA,2011.
[34] 韦宝禧,凌文辉,冮强,等. TRRE发动机关键技术分析及推进性能探索研究[J].推进技术,2017,38(2):298-305.
[35] WEI B X,LING W H,LUO F T,et al.Propulsion performance research and status of TRRE engine experiment[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston,Virginia:AIAA,2017.
[36] MAMPLATA C,TANG M. Two steps instead of a giant leap-an approach for air breathing hypersonic flight[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston,Virginia:AIAA,2011.
备注/Memo
收稿日期:2021-08-01 修回日期:2021-08-25
作者简介:郑日恒(1963—),男,博士,教授,研究领域为高超声速推进。