PDF下载 分享
[1]邹正平,王一帆,杜鹏程,等.强预冷发动机新型热力循环布局及性能分析[J].火箭推进,2021,47(06):62-75.
 ZOU Zhengping,WANG Yifan,DU Pengcheng,et al.Thermodynamic performance analysis of anovel precooled airbreathing engine layout[J].Journal of Rocket Propulsion,2021,47(06):62-75.
点击复制

强预冷发动机新型热力循环布局及性能分析

参考文献/References:

[1] 张灿,王轶鹏,叶蕾. 国外近十年高超声速飞行器技术发展综述[J].战术导弹技术,2020(6):81-86.
[2] 龚春林,陈兵. 组合循环动力在水平起降天地往返飞行器上的应用[J].科技导报,2020,38(12):25-32.
[3] 凌文辉,侯金丽,韦宝禧,等. 空天组合动力技术挑战及解决途径的思考[J].推进技术,2018,39(10):2171-2176.
LING W H,HOU J L,WEI B X,et al.Technical challenge and potential solution for aerospace combined cycle engine[J].Journal of Propulsion Technology,2018,39(10):2171-2176.
[4] 张升升,郑雄,吕雅,等. 国外组合循环动力技术研究进展[J].科技导报,2020,38(12):33-53.
[5] 邹正平,刘火星,唐海龙,等. 高超声速航空发动机强预冷技术研究[J].航空学报,2015,36(8):2544-2562.
[6] 汪元,王振国. 空气预冷发动机及微小通道流动传热研究综述[J].宇航学报,2016,37(1):11-20.
[7] 邓帆,谭慧俊,董昊,等. 预冷组合动力高超声速空天飞机关键技术研究进展[J].推进技术,2018,39(1):1-13.
[8] 朱森元. 氢氧火箭发动机及其低温技术[M].北京:中国宇航出版社,2016.
[9] AZIZ M. Liquid hydrogen:A review on liquefaction,storage,transportation,and safety[J].Energies,2021,14(18):5917.
[10] BALEPIN V. High speed propulsion cycle[EB/OL].https://www.docin.com/p-1179288076.html,2008.
[11] 邹正平,王一帆,额日其太,等. 高超声速强预冷航空发动机技术研究进展[J].航空发动机,2021,47(4):8-21.
[12] 罗佳茂,杨顺华,张建强,等. 甲烷预冷膨胀循环空气涡轮火箭发动机性能分析[J].推进技术,2021,42(9):1964-1975.
[13] BARTH J,TAYLOR N,MULLE G,et al.SABRE technology developmentpathways to flight[C]//Space Propulsion 2018. Seville:Association Aéonautique et Astronautique de France,2018.
[14] FEAST S. The synergetic air-breathing rocket engine(SABRE)development status update[C]//International Astronautical Congress. [S.l.]:IAC,2020.
[15] 张蒙正,南向谊,刘典多. 预冷空气涡轮火箭组合动力系统原理与实现途径[J].火箭推进,2016,42(1):6-12.
ZHANG M Z,NAN X Y,LIU D D. Principles and realizing ways of combined power system for pre-cooling air turbo rocket[J].Journal of Rocket Propulsion,2016,42(1):6-12.
[16] 张蒙正,刘典多,马海波,等. PATR发动机关键技术与性能提升途径初探[J].推进技术,2018,39(9):1921-1927.
[17] XU P C,ZOU Z P,YAO L C. A unified performance conversion method for similar compressors working with different gases based on polytropic analysis and deep-learning improvement[J].Energy Conversion and Management,2021,247:114747.
[18] VARVILL R,BOND A. A comparison of propulsion concepts for SSTO reusable launchers[EB/OL].https://www.semanticscholar.org/paper/A-Comparison-of-Propulsion-Concepts-for-SSTO-Varvill-Bond/47e6c9765bfbc0946 c793e2660c96e53458d2523,2003.
[19] JIVRAJ F,VARVILL R,BOND A,et al.The Scimitar precooled Mach 5 engine[EB/OL].http://www.doc88.com/p-8856973301829.html,2007.
[20] HEMPSELL M,BOND A,BOND R,et al.Progress on the SKYLON and SABRE Development Programme[EB/OL].https://www.researchgate.net/publication/289645719_Progress_on_the_SKYLON_and_SABRE_development_programme,2011.
[21] WEBBER H,BOND A,HEMPSELL M. Sensitivity of pre-cooled air-breathing engine performance to heat exchanger design parameters[C]//57th International Astronautical Congress. Reston,Virigina:AIAA,2006.
[22] ZHANG J Q,WANG Z G,LI Q L. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode[J].Acta Astronautica,2017,138:394-406.
[23] DONG P C,TANG H L,CHEN M,et al.Overall performance design of paralleled heat release and compression system for hypersonic aeroengine[J].Applied Energy,2018,220:36-46.
[24] YU X F,WANG C,YU D R. Minimization of entropy generation of a closed Brayton cycle based precooling-compression system for advanced hypersonic airbreathing engine[J].Energy Conversion and Management,2020,209:112548.
[25] LI H,LIU H X,ZOU Z P. Experimental study and performance analysis of high-performance micro-channel heat exchanger for hypersonic precooled aero-engine[J].Applied Thermal Engineering,2021,182:116108.
[26] HOOPES K,S?CHEZ. A new method for modelling off-design performance of sCO2 heat exchangers without specifying detailed geometry[EB/OL].https://www.semanticscholar.org/paper/A-NEW-METHOD-FOR-MODELLING-OFF-DESIGN-PERFORMANCE-Hoopes-S%C3%A1 nchez/6383a7543ed545a996d163af3f91e0eebe8cfbdd, 2016.
[27] LI H,ZOU Z P,LIU Y M. A refined design method for precoolers with consideration of multi-parameter variations based on low-dimensional analysis[EB/OL].https://www.sciencedirect.com/science/article/pii/S100093612 100337X?via%3Dihub,2021.
[28] 陈一鸣,邹正平,黄振宇,等. 高超声速强预冷发动机强预冷器试验平台建设及高温性能验证试验[C]//第七届爆震与新型推进学术研讨会论文集. 漳州:中国工程热物理学会,2021.
[29] GasTurb12 design and off-design performance of gas turbines users manual[Z].1990.
[30] 王斌. 非线性方程组的BFS秩2拟Newton方法及其在MATLAB中的实现[J].云南民族大学学报(自然科学版),2009,18(3):213-217.

备注/Memo

收稿日期:2021-06-30 修回日期:2021-08-02
基金项目:国家级重点实验室基金项目(HTKJ2020KL011003)
作者简介:邹正平(1970—),男,博士,教授,研究领域为高超声速预冷发动机技术、涡轮气体动力学。通信作者:杜鹏程(1986—),男,博士,副研究员,研究领域为高超声速预冷发动机技术、叶轮机流动数值模拟。

更新日期/Last Update: 1900-01-01