航天推进技术研究院主办
LING Jiang,XU Yihua,SUN Haijun,et al.Effect of gas injection angle on combustion efficiency of secondary combustion chamber for solid rocket scramjet containing boron[J].Journal of Rocket Propulsion,2022,48(01):69-75.
燃气喷射角度对含硼固体火箭超燃冲压发动机补燃室燃烧效率的影响
- Title:
- Effect of gas injection angle on combustion efficiency of secondary combustion chamber for solid rocket scramjet containing boron
- 文章编号:
- 1672-9374(2022)01-0069-07
- Keywords:
- aerospace propulsion system; boron powder; solid rocket; scramjet; secondary combustion of two-phase flow
- 分类号:
- V236
- 文献标志码:
- A
- 摘要:
- 固体火箭燃气超燃冲压发动机具有高比冲、结构简单、流量易调节等优点,然而在超音速空气流的补燃室中,如何让燃料更好地与空气掺混,增加颗粒停留时间,在较短时间内释放出更多的燃烧焓成为目前研究的重点。采用Realiazble k-ε湍流模型,单步涡团耗散模型,在King的硼颗粒点火燃烧模型的基础上考虑了硼颗粒在高速气流当中的气动剥离效应,利用龙格-库塔算法迭代计算硼颗粒点火燃烧过程,对燃气进气方向与轴向夹角从45°~180°的10种进气方式下的补燃室进行了三维两相燃烧流动计算,分析了各种进气角下的燃气燃烧效率、硼颗粒燃烧效率以及总燃烧效率。结果表明:当一次燃气喷射角度与轴向夹角逐渐增加时,燃气与颗粒燃烧效率逐渐增加,并在180°时燃烧效率和比冲为最高。
- Abstract:
- Solid rocket gas-fired scramjet has the advantages of high specific impulse,simple structure and easy flow adjustment. However,in the secondary combustion chamber with supersonic air flow,how to make the fuel mixed with air better,increase the residence time of gas and particles,and release more combustion enthalpy in a short time has become the focus of current research. Based on King’s ignition and combustion model of boron particles,realiable k-ε turbulence model and single-step vortex dissipation model are adopted in this paper,and the aerodynamic stripping effect of boron particles in high-speed airflow is considered. The Runge Kutta algorithm is used to iteratively calculate the ignition and combustion process of boron particles. The three-dimensional two-phase combustion flow in the secondary combustion chamber under 10 intake modes with the angle between gas inlet direction and axial direction from 45° to 180° is calculated. In addition,the gas combustion efficiency under various intake angles,the combustion efficiency of boron particles and the overall combustion efficiency are analyzed. The results show that when the angle between the injection angle of primary gas and the axial angle increases gradually,the combustion efficiency of fuel gas and particles increases gradually,and the combustion efficiency and the specific impulse reach the highest at 180°.
参考文献/References:
[1] NAKAYA S,HIKICHI Y,NAKAZAWA Y,et al. Ignition and supersonic combustion behavior of liquid ethanol in a scramjet model combustor with cavity flame holder[J].Proceedings of the Combustion Institute,2015,35(2):2091-2099.
[2] SHARMA V,ESWARAN V,CHAKRABORTY D. Effect of location of a transverse sonic jet on shock augmented mixing in a SCRAMJET engine[J].Aerospace Science and Technology,2020,96:105535.
[3] SELEZNEV R K,SURZHIKOV S T,SHANG J S. A review of the scramjet experimental data base[J].Progress in Aerospace Sciences,2019,106:43-70.
[4] 任全彬,胡建新,王英红. 固体火箭冲压发动机燃烧基础[M].北京:国防工业出版社,2016.
[5] 胡建新. 含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙:国防科学技术大学,2006.
[6] 韩万之,魏志军,杨光,等.固体组合式超燃冲压发动机燃烧室组合构型研究[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集. [S.l.]:中国航天第三专业信息网,2019.
[7] 鲍福廷,黄熙君,张振鹏,等.固体火箭冲压组合发动机[M].北京:中国宇航出版社,2006.
[8] 刘洋,高勇刚,余晓京,等.固体火箭燃气超燃冲压发动机概念分析(Ⅰ):全流道一体化设计[J].固体火箭技术,2018,41(4):403-413.
[9] BEN-YAKAR A,GANY A. Experimental study of a solid fuel scramjet[C]//30th Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,1994.
[10] KUO K. Solid fuel ignition and combustion characteristics under high-speed crossflows[C]//26th Joint Propulsion Conference. Reston,Virigina:AIAA,1990.
[11] JARYMOWYCZ T A,YANG V,KUO K K. Numerical study of solid-fuel combustion under supersonic crossflows[J].Journal of Propulsion and Power,1992,8(2):346-353.
[12] 梁磊,秦飞,石磊,等.固体火箭超燃冲压发动机燃烧室实验研究[C]//中国航天第三专业信息网第三十九届技术交流会暨第三届空天动力联合会议论文集.[S.l.]:中国航天第三专业信息网,2018.
[13] 高勇刚,刘洋,余晓京,等.固体火箭燃气超燃冲压发动机燃烧组织技术研究[J].推进技术,2019,40(1):140-150.
[14] 刘仔,陈林泉,褚佑彪,等.燃气喷射方式对固体火箭超燃冲压发动机性能的影响[J].固体火箭技术,2018,41(6):710-714.
[15] 迟雪,张淋清,白玉冰,等.固体火箭超燃冲压发动机燃气喷射角度对超声速流动的影响[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集.[S.l.]:中国航天第三专业信息网,2017.
[16] KING M K. Boron particle ignition in hot gas streams[J].Combustion Science and Technology,1973,8(5/6):255-273.
[17] 胡旭. 涡旋掺混对硼颗粒点火燃烧影响的数值仿真研究[D].南昌:南昌航空大学,2015.
[18] 王洪远,徐义华,胡旭,等.空气旋转进气对含硼固体冲压发动机二次燃烧性能影响的研究[J].兵工学报,2015,36(4):619-625.
[19] 胡旭,徐义华,王洪远,等.进气道结构对含硼固冲发动机二次燃烧性能影响分析[J].四川兵工学报,2014,35(12):133-137.
[20] 严传俊,范玮. 燃烧学[M].3版. 西安:西北工业大学出版社,2016.
相似文献/References:
[1]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(01):61.
[2]王长辉,刘宇.塞式喷管冷流试验研究[J].火箭推进,2007,33(03):6.
Wang Changhui,Liu Yu.Cold flow tests of aerospike nozzles[J].Journal of Rocket Propulsion,2007,33(01):6.
备注/Memo
收稿日期:2020-11-12; 修回日期:2021-02-04
基金项目:国家自然科学基金(51666012)
作者简介:凌江(1991—),男,硕士,研究领域为固体火箭超燃冲压发动机燃烧流动。
通信作者:徐义华(1971—),男,博士,教授,研究领域为发动机工作过程仿真。