航天推进技术研究院主办
ZHANG Pengfei,LI Xing,XU Kaifu,et al.Influence of real gas effect on turbine performance under high pressure with simulation[J].Journal of Rocket Propulsion,2022,48(02):94-104.
高压下真实气体效应对涡轮性能影响的仿真
- Title:
- Influence of real gas effect on turbine performance under high pressure with simulation
- 文章编号:
- 1672-9374(2022)02-0094-11
- 分类号:
- V434.11
- 文献标志码:
- A
- 摘要:
- 大推力补燃循环液体火箭发动机主涡轮燃气在高压下由于受到真实气体效应的影响,其气体性能偏离理想气体,常规分析方法得到的涡轮性能与实际情况存在一定偏差。采用三维流动仿真方法,结合SST湍流模型,采用定物性理想气体、ARK气体状态方程和基于NIST Refprop 真实物性数据库的涡轮性能进行了仿真研究,分析了甲烷和富氧燃气的涡轮性能,并与结合一维压缩因子修正的性能结果进行了对比。研究表明,基于真实物性数据的涡轮仿真性能与理想气体存在明显偏差,使用ARK气体状态方程能够有效减小性能仿真偏差,而使用合适的压缩因子修正具有较高的精度,可作为工程算法。
- Abstract:
- The performance of the main turbine gas of the high thrust afterburning liquid rocket engine deviates from the ideal gas due to the influence of the real gas effect at high pressure, and the turbine performance obtained by the conventional analysis method is somewhat different from the actual situation.In this paper, the three-dimensional flow simulation method and SST turbulence model were used to simulate the turbine performance with the ideal gas of constant properties, ARK gas state equation and NIST refprop real gas properties database, respectively.The turbine performances of methane and oxygen-enriched gas were analyzed and compared with the results of the performance modified by one-dimensional compression factor.The research shows that the simulated turbine performance based on the real gas property data has obvious deviation from that with the ideal gas.The ARK gas state equation can effectively reduce the deviation of the simulated performance, while the correction with the appropriate compression factor has enough accuracy and can be used for engineering.
参考文献/References:
[1] 谭永华.中国重型运载火箭动力系统研究[J].火箭推进, 2011, 37(1):1-6.
TAN Y H.Research on power system of heavy launch vehicle in China[J].Journal of Rocket Propulsion, 2011, 37(1):1-6.
[2] 李斌, 栾希亭, 张小平.载人登月主动力:大推力液氧煤油发动机研究[J].载人航天, 2011, 17(1):28-33.
[3] 任众, 许开富, 韩飞.涡轮叶型冷热态转换在液体火箭发动机中的应用[J].火箭推进, 2018, 44(2):33-38.
REN Z, XU K F, HAN F.Application of cold and hot state conversion of turbine blade profile in liquid rocket engine[J].Journal of Rocket Propulsion, 2018, 44(2):33-38.
[4] БЕЛЯЕВ Е Н, ВОРОБВЕВ А Г, НАССИМЕНТО Л Б.Проблемные вопросы энергетической увязки параметров жидкостных ракетных двигателей[J].Трупвт,2013(71):1-9.
[5] 徐浩海, 刘站国.补燃循环发动机启动过程涡轮功率控制[J].火箭推进, 2006, 32(4):10-14.
XU H H, LIU Z G.Turbine power control of staged combustion cycle engine during start-up[J].Journal of Rocket Propulsion, 2006, 32(4):10-14.
[6] ВАЛЮХОВ С Г, ГУРОВ В И, СТЕРНИНЛ Е.Учёт реальных свойств водородного газа при расчёте турбин[J].Журнал "Конверсия в машиностроении",2004(5):11-13.
[7] 牟斌,江雄,王建涛.低温增压真实气体效应下轴流压缩机功率计算[C]//第九届全国流体力学学术会议论文集.南京:中国力学学会流体力学专业委员会,2016.
[8] LUO Y X, WANG X Y, GE Y Z.Real gas effects on charging and discharging processes of high pressure pneumatics[J].Chinese Journal of Mechanical Engineering, 2013, 26(1):61-68.
[9] 赵连会, 张玫宝, 高旭鹏.考虑真实燃气物性的透平数值研究[J].上海电气技术, 2013, 6(3):10-16.
[10] 刘宁,张华彪,李敬,等.富燃工质热力性质对涡轮性能影响的数值研究[C]//中国工程热物理年会2014年年会论文集.西安:中国工程热物理学会,2014.
[11] BALTADJIEV N, LETTIERI C, SPAKOVSZKY Z.An investigation of real gas effects in supercritical CO2 centrifugal compressors[J].Journal of Turbomachinery, 2015(9):091003.
[12] JOHNSON R C.Real gas effects in the flow of methane and natural gas through critical flow nozzles[R].NASA TM X-52994, 1971.
[13] AUNGIER R H.A fast, accurate real gas equation of statefor fluid dynamic analysis applications[J].Journal of Fluids Engineering, 1995, 117(2):277-281.
[14] The National Institute of Standards and Technology(NIST).Thermophysical properties of fluid systems[EB/OL].http://webbook.nist.gov/chemistry/fluid/,2022.
[15] 沈维道.工程热力学[M].3版.北京:高等教育出版社, 2001.
[16] ANSYS Inc.ANSYS CFX-Solver theory guide[Z].2013.
[17] 秦艳平,马冬英,邢理想.真实气体效应对高压涡轮理论绝热功的影响[C]//航天三网第四十届技术交流会暨第四届空天动力联合会议论文集.昆明:中国航天第三专业信息网,2019.
[18] ADCOCK J B.Real-gas effects associated with one-dimensional transonic flow of cryogenic nitrogen[R].NASA TN D-8274, 1977.
[19] ADCOCK J, OGBURN M E.Power calculations for isentropic compressions of cryogenic nitrogen[R].NASA TN D-8394, 1976.
[20] LAWING P, ADCOCK J, LADSON C L.A fan pressure ratio correlation in terms of Mach number and Reynolds number for the Langley 0.3 meter transonic cryogenic tunnel[R].NASA-TP-1752, 1980.
备注/Memo
收稿日期:2022-02-20 修回日期:2022-03-06
基金项目:国家自然科学基金(51775412)
作者简介:张鹏飞(1987—),男,博士,研究领域为液体火箭发动机涡轮泵设计、涡轮气动优化。