航天推进技术研究院主办
MA Changjin,LIU Jia,WANG Wenzhao,et al.Electrochemical machining ofrocket engine turbopump shaft[J].Journal of Rocket Propulsion,2022,48(02):127-132.
火箭发动机涡轮泵轴电解扩孔加工技术
- Title:
- Electrochemical machining ofrocket engine turbopump shaft
- 文章编号:
- 1672-9374(2022)02-0127-06
- 分类号:
- TG662
- 文献标志码:
- A
- 摘要:
- 某型液体火箭发动机涡轮泵轴内腔采用台阶式深长孔结构,需将长度424 mm的深孔直径由φ71.8 mm扩孔至φ89 mm,采用常规机械加工,存在刀具易振颤、散热条件差等难题,加工难度极大,成本高昂。提出一种工件旋转、阴极可调整式随动进给电解加工方法解决大深径比深孔扩孔难题,借助流场电场仿真技术手段,完成了内喷式工具阴极刃的刃口优化设计、长阴极刃的电解液喷口结构设计与优化、过渡圆弧的阴极轮廓设计与优化 并完成了加工装置的适应性改制,进行了电解扩孔技术的电解加工参数优选。在电解液浓度20(硝酸钠溶液)、电解液温度29~33 ℃、电解液入口压力0.3 MPa、电压20 V、阴极进给速度0.02 mm/min、电机转速8 r/min的加工条件下,借助超声波测厚仪在机检测剩余壁厚,对阴极进行动态调整,加工出圆度及同轴度优于φ0.02 mm、直径精度优于0.2 mm的轴深孔结构。
- Abstract:
- A liquid rocket engine turbopump shaft cavity adopts stepped deep hole structure, the diameter of deep hole with length of 424 mm was needed to be enlarged from φ71.8 mm to φ89 mm. Using conventional machining, there are problems such as easy to shake the tool, poor heat dissipation conditions, processing extremely difficult, high cost etc. A workpiece rotation, the cathode adjustable type servo feed electrochemical machining methods was proposed to solve deep hole reaming problem with large depth to diameter ratio, with the aid of flow field simulation technology. Which was completed within the edge of the tool cathode blade optimization design, long blade cathode electrolyte nozzle structural design and optimization, transition arc cathode contour design and optimization, the adaptability of restructuring and finished the processing device. Electrolytic reaming technology of electrolytic machining parameters optimization was present in the electrolyte concentration of 20(sodium nitrate solution), electrolyte temperature 29-33 ℃, electrolyte inlet pressure 0.3 MPa, voltage 20 V, cathode feeding speed 0.02 mm/min, motor speed 8 r/min processing conditions, with the ultrasonic thickness measuring instrument in the machine to detect the remaining wall thickness. The cathode was dynamically adjusted to produce a shaft deep hole structure with roundness and coaxiality better than φ0.02 mm and diameter accuracy better than 0.2 mm.
参考文献/References:
[1] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社, 2005.
[2] 金路, 王俨剀, 王彤, 等.涡轮泵转子失稳故障分析[J].火箭推进, 2020, 46(4):23-30.
JIN L, WANG Y K, WANG T, et al.Analysis and diagnosis of turbine pump rotor instability[J].Journal of Rocket Propulsion, 2020, 46(4):23-30.
[3] 袁思波, 于振涛, 皇甫强, 等.钛合金细长子孔的钻削工艺研究[J].稀有金属快报, 2005, 24(12):38-40.
[4] 张祖军, 陈奎儒, 刘继光, 等.深小孔特种加工[J].机械工程与自动化, 2004(6):20-22.
[5] 李鹏, 陈永当, 鲍志强, 等.国内外电解加工的研究现状[J].机电一体化, 2013, 19(8):13-15.
[6] 徐斌,史业君,刘海波.深小型孔电解加工技术研究[C]//第 14 届全国特种加工学术会议论文集.哈尔滨:哈尔滨工业大学出版社,2011.
[7] 韩亮, 张凌云.TA2M钛板扩孔成形中的形状畸变现象研究[J].沈阳航空工业学院学报, 2009, 26(3):19-21.
[8] 徐家文, 云乃彰, 王建业.电化学加工技术:原理·工艺及应用[M].北京:国防工业出版社, 2008.
[9] 夏任波.电解扩孔加工试验研究[J].林业机械与木工设备, 2016, 44(5):42-45.
[10] 卓开富.螺旋电极电解扩孔工艺研究[J].机械, 1998, 25(2):5-7.
[11] 唐霖.立式刻槽和扩孔电解加工装置设计[J].电加工与模具, 2009(2):32-36.
[12] 李兆龙, 韦东波, 狄士春, 等.极脉冲电解加工变截面孔研究[J].兵工学报, 2012, 33(2):197-202.
[13] 陈玉宏, 刘嘉, 朱荻.小间隙高速精密电解拉削扩孔方法研究[J].机械制造与自动化, 2021, 50(2):5-8.
[14] 张京超, 田明鑫, 徐文骥, 等.电解扩孔成形加工装置的设计[J].电加工与模具, 2015(4):62-65.
[15] 张明岐,傅军英,潘志福,等.飞机起落架轮轴深孔中间段电解扩孔加工工艺研究[C]∥第 18 届全国特种加工学术会议论文集.乌鲁木齐:新疆大学出版社,2019.
[16] 何定健, 李建勋, 王勇.深孔加工关键技术及发展[J].航空制造技术, 2008, 51(21):90-93.
[17] 高本河, 吴序堂, 熊镇芹, 等.两端小中间大的深小孔镗削装置[J].机械工艺师, 2000(7):23-25.
备注/Memo
收稿日期:2022-02-15 修回日期:2022-03-11
基金项目:国家自然科学基金(52005385)
作者简介:马长进(1991—),男,硕士,工程师,研究领域为液体火箭发动机电加工技术。